SUPERNOVAE

Part D (complement to Thomas Janka's slides)

Supernovae have been seen and documented by humans for over 2000 years.

Drawing of when **Tycho Brahe** observed **Supernova 1572** from Herrevad's Kloster in Skåne.

Kepler's supernova of 1604 : the last supernova seen as it *exploded*.

Cas A (exploded around 1670) : the youngest SN we see in optical light today.

NASA/JPL-Caltech

G1.9+0.3 (exploded around 1900) : the youngest SN we see at any waveband (radio, X-rays,..) today.

radio

X-ray

NASA/CXC/NCSU/S.Reynolds et al.

SNe are so bright we can see them in other galaxies

Under a few months/weeks they are as bright as a whole galaxy.

Credit: O.Trondal/N Suntzeff.

Prentice 2016

- Most detected SNe within redshift z ~ 0.05 (~200 Mpc). (Andromeda is 0.8 MPc away).
- Discoveries beyond $z \sim 0.15$ (~600 Mpc) usually following a Gamma Ray Burst (GRB) trigger.

Supernova discoveries

- Today several 1000 discovered per year : automated survey telescopes have revolutionised.
- About 1 SN occurs per second in the universe : vi discover about 1 in 30,000 of these.

Type la supernovae

•1931 : Chandrasekhar derives upper mass limit for WDs (~1.4 M_{sun}). What happens if such a star accretes more mass?

1) Nuclear potential energy available (if you burn 1) solar mass of C och O to Fe) : 2*10⁵¹ erg 2) Gravitational binding energy : 3*10⁵⁰ erg 3) Degenerate conditions

 $1+2+3 \longrightarrow explosive disruption, no remnant.$

- Produce mostly iron-group elements: about half the cosmic production from here (other half from core-collapse SNe).
- •Most events probably due to 2 WDs merging.
- Can be used as standard candle to measure distances -> Discovery of cosmic acceleration and dark energy in 1998.

Supernovae from massive stars

Fuel	Duration	Т (К)	Cooling	T _{surf} (K)	HR
Н	10 ⁷ yr	107	photons	20,000-40,0	O,B
He	10 ⁶ yr	10 ⁸		3,000-4,000	K,M
С	10 ³ yr	8*10 ⁸	neutrinos	3,000-60,00	O-M
Ne	1 yr	1.8*10 ⁹	11		11
Ο	1 yr	2.1*10 ⁹	11		11
Si	1 day	3.7*10 ⁹	11		11

No more nuclear energy available from an iron core.

The core collapses to a **neutron star**.

Binding energy released: E ~ GM^2/R ~ 10⁵³ erg

Stellar fates versus M_{ZAMS}

Two types of collapse initiation

ONeMg core

Density is high and degeneracy pressure important for support.

Efficient electron capture reactions on ²⁰Ne at $M_{ONeMg} \ge 1.37 M_{\odot}$ causes catastrophic loss of the supporting electrons. (M_{Ch} rapidly decreases)

Expected only for M_{ZAMS} 9 – $10M_{\odot}$ range, and this range may be even smaller or even non-existent.

Iron core

Density is lower and radiation pressure important.

Efficient photo-disintegration processes causes catastrophic loss of supporting photons.

Expected for $M_{ZAMS} \sim 10 - 100 M_{\odot}$

Explosive nucleosynthesis

• Fuel for explosive burning is O, Ne, Mg, Si —> no explosive C burning.

- Main explosive burning stages are Si burning and O burning.
- Because the fuel layers have small neutron excess ($\eta \sim 10^{-3}$), the explosive Si burning makes 56Ni, and roughly solar proportions of iron-group elements.
- Explosive O burning makes Si, S, Ca, also in good agreement with solar abundances.
- Elements up to Mg are typically made in the pre-SN star, Si and up by explosive burning.

These layers are ejected without any changes in composition by the explosion (when the shock reaches them it is too cool to burn anything)

Supernovae from massive stars i 3D

Melson 2015

Wongwathanarat 2015, Stockinger 2020.

ľ