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1 Conditions in the exploding star

A CCSN explosion deposits an energy Edep ∼ 1051 erg in the inner layers of
the collapsing star. This energy is spread to the whole star by a shock wave
propagating outwards with vshock ∼ 104 km s−1. It reaches the surface after
a time tsurf = R0/vshock, where R0 is the stellar progenitor radius. We can
estimate tsurf ∼1 minute for the most compact progenitors (WR stars, bare
He cores, R0 ∼ 1 R�), and tsurf ∼1 day for the most extended ones (RSGs,
R0 ∼ 500 R�). The shock breakout begins the light display.

Equipartition. The shocked layers are both accelerated and heated. In
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the limit of strong shocks (vshock � vsound), one can show that radiation-
dominated gas fulfills equipartition:

E0
int = E0

kin =
1

2
Edep (1)

That is, in the shock wake, energy is equally divided between internal energy and
bulk kinetic energy. This limit is a good approximation here because vsound ∼ 10
km s−1 in the star, much lower than the shock speed.

The first law of thermodynamics states that “the change in internal energy
in a volume equals the energy deposited, minus the net energy transported out
of the volume, minus the work done (”pdV”)”. For a moving gas we write this
law most easily on Lagrangian form, with m as the independent variable rather
than radius r:

δu(m, t)

δt
= s(m, t)− ∂l(m, t)

∂m
− p(m, t)∂ (1/ρ(m, t))

∂t
(2)

Here u is the internal energy per unit mass (erg g−1), s is the energy deposi-
tion rate (e.g. by radioactivity) per unit mass and time (erg s−1 g−1), l is the
luminosity (erg s−1), p is the pressure (barye =dyne cm−2 = erg cm−3), and ρ
is the density (g cm−3).

Energy density u. The internal energy consists of three main parts:

1) Kinetic motions of particles, for a monoatomic gas ukin = n × 3
2kT/ρ =

3
2kT/ (Amp), where A is the atomic weight.

2) Radiation field energy, which under optically thick equilibrium conditions
is urad = aT 4/ρ, where a is the radiation constant a = 7.56 × 10−15 erg
cm−3 K−4.

3) Potential energy in excited and/or ionized states, upot = ρ−1
∑Nstates

i=1 niEi,
where ni is the number density of state i and Ei its energy.

In SNe in the early phases after the shock has passed, radiation energy typically
dominates so we can take u ≈ urad .

Pressure. The pressure p can be expressed in terms of T and ρ by an equation
of state, which for a radiation-dominated gas depends only on T :

p =
1

3
aT 4 =

1

3
uradρ (3)

We will return later to the terms for radiation transport (∂l(m,t)∂m ) and energy
deposition (s(m, t)) in Eq. 2. If we assume that both of these are unimportant,
we get the adiabatic limit of the first law of thermodynamics as follows:

4aT 3Ṫ

ρ
+ aT 4

˙(1

ρ

)
=

1

3
aT 4

˙(1

ρ

)
(4)
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giving
4Ṫ

T
− ρ̇

ρ
=

1

3

ρ̇

ρ
(5)

or
Ṫ

T
=

1

3

ρ̇

ρ
(6)

Because ρ̇/ρ = −3ṙ/r, we get

Ṫ

T
= − ṙ

r
(7)

which has solution

T = T0 (r/r0)
−1

(8)

This tells us that the temperature in a shell evolves as the inverse of the radius
of the shell as it expands.

Homologous expansion. Quite soon the material reaches free-coasting tra-
jectories (velocity v ≈ constant). After some further time, the layers have
expanded so far from their starting positions that r ≈ vt holds, this is called
homology. Then, denoting the beginning of that phase by t0, r/r0 = t/t0 and
then Eq. 8 becomes

T = T0

(
t

t0

)−1

(9)

From the point of homology temperature then evolves with the inverse of time.
We will make use of this result later when we estimate the SN brightness.

2 Light curve duration

Let λmfp be the mean-free-path, the typical length photons travel before inter-

acting with matter. We have λmfp = 1/(κρ), where κ is the opacity (cm2 g−1).
The time between interactions is then λmfp/c. If N is the required number of
scatterings to escape the nebula, the total diffusion time is tdiff = Nλmfp/c.
One can show that N ≈ χτ2 where τ = R/λmfp is the optical depth, where we
let R denote the outer radius of the expanding nebula (velocity vmax). Here χ is
a parameter of order unity to allow for choosing photons to start at the centre,
at R/2, etc. Then

tdiff (t) =
χR(t)2κ(t)ρ(t)

c
(10)

Using homology (R(t) = vmaxt) and taking a uniform sphere density relation
ρ ≈M/(4π/3R3), we get

tdiff (t) =
3χ

4π

κ(t)M

vmaxtc
(11)
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Using E = 3/10Mv2
max (uniform sphere case), and finally equating tdiff (∆t) =

∆t, where ∆t is the characteristic duration of the diffusion light curve, we get

∆t = 20d χ1/2E
−1/4
51 M

3/4
M�

κ
1/2
0.2 (12)

where E51 = E/1051 erg, MM� = M/1 M�, and κ0.2 = κ/0.2 cm2g−1. If
ionization can be maintained so that κ0.2 stays close to unity (0.2 is the value
of electron scattering opacity for all fully ionized elements except H which has
0.4), we would therefore expect 1051 erg explosions of stars from 1− 10 M� to
display a diffusion-type light curve over ∼ 1− 4 months.

That the SN diffuses until tdiff (t) = t can be shown from numeric simulations,
but also be qualitatively understood. If tdiff � t radiation can immediately es-
cape, the diffusion phase is over and the LC is declining as the internal energy is
rapidly radiated away. If tdiff � t the radiation is still trapped and thus diffu-
sion still ongoing. The transition must come when the two time scales cross over.

Although a simplistic derivation, the scalings (the exponents) in Eq. 12 turn
out to be quite accurate compared to sophisticated numeric simulations of SN
light curves. The weak sensitivity to E suggests that one should be able to
estimate M × κ2/3 ∝ ∆t4/3E1/3 quite accurately from the observed duration of
the LC (uncertainty in E has minor impact so having a rough estimate of this
can be sufficient).

2.1 Type IIP SNe : considering recombination

The behaviour of Type IIP SNe is somewhat more complex due to strong changes
of opacity with time in the ejecta - opacity was assumed constant in the treat-
ment above. When the temperature in a layer reaches the H recombination
temperature (Trec ∼ 6000 K), the opacity drops to almost zero as other opac-
ities than electron scattering are low, and the internal energy in that shell is
therefore quickly released. Let us try another approach not relying on opac-
ity. The luminosity is, taking Tphot ≈ Trec as we know once layers recombine
there is almost no opacity outside that layer and thus it should be close to the
photosphere:

L(t) = 4πRphot(t)
2σT 4

rec (13)

If one takes Rphot(t) ≈ constant ≈ vmax × ∆tIIP
2 this becomes

L(t) = πv2
max∆t2IIPσT

4
rec (14)

On the other hand, if we say that luminosity should equal a characteristic value
of the internal energy, which we take at ∆tIIP /2, over the light curve duration
time ∆tIIP , then (note that total energy Etot evolves also as t−1 as it is V ×
aT 4 ∝ t3t−4),

L ≈ Eint(t = ∆tIIP /2)

∆tIIP
=

E
2

R0

vmax∆tIIP /2

∆tIIP
(15)
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Combining these two expressions to eliminate L we get (lettingM10 = M/ (10 M�))

∆tIIP = 80d E
−1/8
51 R

1/4
0,500M

3/8
10 (16)

Here σ = 5.67× 10−5 erg cm−2 s−1 K−4 is the Stefan-Boltzmann constant and
R0,500 = R0/500 R�,M10 = M/ (10 M�). In this framework

• The dependency on E and M in Eq. 16 is weaker than in Eq 12. This
weakness means the LC duration (alone) does not constrain these param-
eters to high accuracy.

• R0 replaces κ as a parameter. But weak dependency also for R0.

We know that RSGs have R0 ∼ 500 R�. If we assume E51 = 1, their typ-
ical observed diffusion duration of 120d gives from Eq. 16 a mass estimate
M ∼ (120d/40d)8/3 ∼ 18 M�.

One may also replace Rphot in Eq. 13 not by Rphot(t) ≈ constant ≈ vmax×∆tIIP
2

but instead by the diffusion equation (Eq. 10). Then (still combining with Eq.
15) one gets

∆tIIP = 81d E
−1/6
51 M

1/2
10 R

1/6
0,500κ

1/6
0.2 (17)

These analytic considerations are not only useful for simple fitting procedures.
They fundamentally tell us about sensitivities and what is likely to be possible
to determine by comparing detailed numeric light curve simulations to observa-
tions. For example, it is clear that E and R0 cannot readily be extracted from
a Type IIP SN LC duration, no matter how detailed model. The weak scaling
also give us a first explanation for the relative similarity of IIP light curves
durations; they all have rather similar length (∼120d). As different progenitors
would still have R0, E and M similar to factor few (RSGs don’t vary by more
than that in properties), the variety in ∆tIIP is, from Eq. 17 quite small.

What about trying to extract the ejecta mass from the LC duration? Here
the scalings are less weak than for E and R0 so the situation looks more encour-
aging. Somewhat surprisingly, only in 2003 was the first systematic attempt to
do this carried out (Hamuy 2003). But something went terribly wrong - the de-
rived masses were often much larger (30, 40, 50..M�) than any reasonable RSG
mass.

The most important shortcoming of the analytics derived so far is the omis-
sion of radioactive decay, which turns out to have a significant impact on
the LC duration of Type IIP SNe, and was the reason these early attemps went
astray. Remember there is a source term s(m, t) in the energy equation which
we have ignored so far.
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To include this effect in a simplified way, make an ansatz that the extra in-
ternal energy generated by radioactivity can be approximated to be deposited
at t = tdecay, and then degrades with t−1 just as the initial explosion deposited
energy. We get one term for each step in the 2-step decay 56Ni→56 Co→56 Fe:

Eint(t) = E0
t0
t

+ ENiMNi
τNi

t
+ ECoMNi

τCo

t
(18)

where t0 denotes the shock breakout time t0 = R0/vshock ≈ R0/vmax ≈ R0E
−1/2M1/2.

ENi and ECo are the total radioactive decay energies released by a solar mass of
56Ni and 56Co, respectively, and τNi, τCo are the respective decay times of 8.8d
and 111d. The above can be rewritten

Eint(t) = E0
t0
t
× f (19)

f =
[
1 + CMNiE

−1/2M−1/2R−1
0

]
(20)

In the derivations above, the light curve duration scales with E
1/6
0 through a

E
1/6
int dependency (don’t confuse with overall E−1/6 scaling where also the ejecta

velocity enters). Thus, with the introduced boosting factor we expect that we
get a modified light curve duration according to

∆twith−radioactivityIIP = ∆tIIP × f1/6 (21)

Comparison to numeric simulations show that this scaling holds quite well, and
for typical 56Ni masses the plateau is lengthened by ∼20% due to the impact
of sustained heating by 56Co. However, the value of the C coefficient, and
thereby what exactly this lengthening factor is, depends on assumptions about
the 56Ni mixing. Goldberg 2019 find, when units of M10, E51, R0,500 are used
in Eq. 20, a best value C = 87 (so frad = 3.61 for MNi = 0.03 M� and
M10 = E51 = R0,500 = 1).

Thus, with consideration of radioactivity, an upgrade of Eq. 17 becomes (where
M56Ni,0.03 is M56Ni/0.03 M�)

∆tIIP = 81d E
−1/6
51 M

1/2
10 R

1/6
0,500κ

1/6
0.2 ×

(
1 + 2.6M56Ni,0.03E

−1/2
51 M

−1/2
10 R−1

0,500

)1/6

(22)

3 Light curve brightness

3.1 Explosion-deposited energy

3.1.1 Constant opacity

The brightness scale can at first instance be estimated as the internal energy
at time ∆t divided by the diffusion time tdiff ≈ ∆t. Using again the adiabatic
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limit:

L ≈ E/2(R(t = ∆t)/R0)−1

∆t
=

E/2R0

vmax∆t2
=

E/2R0(
10
3

)1/2
E1/2M−1/2∆t2

(23)

Insert now ∆t = 20d E
−1/4
51 M

3/4
M�

κ
1/2
0.2 from Eq. 12. Then

L ≈ 6× 1042E51M
−1
M�

R0,500κ
−1
0.2 erg s−1 (24)

We make the following observations

• Brightness increases (linearly) with E. This is not quite as simple
as “put twice as much energy in and twice as much comes out”. Higher E
leads to a larger energy reservoar (E1 factor), but also to higher velocities,
which gives stronger adiabatic degradation to a given radius (E1/4 factor).
But this is offset by a shorter diffusion time (E−1/4 factor), so these two
effects cancel and leave only the first one.

• Brightness increases (linearly) with R0. This is because larger R0

means less adiabatic cooling can occur for a given elapsed time. Compact
stars like Wolf-Rayet and bare He cores have R0 ∼ few R�. Then, without
further energy input they would peak at about 1040 erg s−1 according to
24. Explosion of white dwarfs (R0 ∼ 0.01R�) would peak at 1038 erg s−1.

• Brightness decreases (linearly) with M . Increasing M leads to lower
velocities, higher densities, and more trapping of the radiation. The radi-
ation leakage out from the SN then gets spread out over a longer diffusion
time (M3/4 factor), and also degrades more adiabatically (M1/4 factor).

• Brightess decreases (linearly) with κ. Spreading the energy release
over a longer diffusion time both dilutes by the time itself (κ1/2 factor) and
leads to more adiabatic degradation over this longer time (κ1/2 factor).

3.1.2 Type IIP SNe

With the alternative derivation for Type IIP SNe, if one eliminates ∆tIIP in-
stead of L from Eqs. 14 and 15, one gets

L ∝ E3/4M−1/4R
1/2
0 T 2

rec (25)

All scalings here are weaker than in Eq 24. Considering both equations, the
brightness appears mainly a potential diagnostic of E, but also this dependency
is sublinear.

If one instead solves for L from Eqs. 13, 15 and 10 one gets instead

L ∝ E5/6M−1/2R
2/3
0 κ−1/3 (26)
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One may stop and ponder the question, why is R0 is parameter on par with
M and E in the analytic scalings? After all, doesn’t a stellar evolution model
predict R0 given M? Not quite. It would predict M and R0 given a MZAMS .
But, 1) There could be degeneracy in this even with perfectly known physics,
i.e. two different MZAMS could give similar M and R0, and 2) the generally
held view is that the uncertainties in such mapping are too large to make it
meaningful to rely on those predictions. For example, the envelopes of RSGs
are quite poorly understood so even a link between M and R0 is poorly con-
strained theoretically. Therefore, the approach of keeping both M and R0 as
free parameters remains a popular and viable approach.

To know how accurate the analytic scalings are, they have to be compared
to numeric LC simulations. In the literature such work is quite recent. Gold-
berg 2019 take the approach to keep the scaling exponents of M , E, and R0,
drop out κ and Trec, and then fit the overall scale constants governing L and
∆tIIP . For luminosity on day 50, they determine that a relation (keeping the
analytically derived exponents):

L50 = 1.5× 1042M
−1/2
10 E

5/6
51 R

2/3
0,500 erg s−1 (27)

agrees with L50 obtained in a grid of advanced numeric models (where evolu-
tionary progenitors were used) to an rms of 8%. By letting also the exponents
float in the fitting, an alternative relation

L50 = 1.4× 1042M−0.40
10 E0.74

51 R0.76
0,500 erg s−1 (28)

reduces the rms to 5%. Noteworthy here is how close the best-fitting exponents
are to the analytically derives ones.

Goldberg 2019 combine their free-fitted formulas for L50 and ∆tIIP (large 56Ni
mass limit) to derive inverted expressions for M and E as function of observables
plus a specified R0. They then recover M and E with an rms of 10%. They
emphasize that it is in fact not possible to derive all of the three parameters M ,
R0 and E from a IIP light curve which really has only two pieces of information
: brightness level and duration.

3.2 Radioactivity

Table 1 shows the peak brightness of different transients predicted by Eq. 24
and observed ones. It is clear that, apart from Type IIP SNe, shock deposited
energy diffusing out is not the correct explanation for SN brightness. Instead,
the bulk energy release by Type II-pec, Type Ibc and Type Ia SNe has its
origin in radioactive powering. The most important radioisotope in SNe is 56Ni,
which decays to 56Co on a time-scale of 8.8d, and then to 56Fe on a time-scale
of 111.4d. A total 56Ni mass of ∼ 0.05 M� is produced in CCSNe and ∼0.5 M�
in Type Ia SNe. The Q-value is 5.5 MeV/decay so the total decay energy is

Edecay ≈
M(56Ni)

56mp
× 5.5× 106 eV ≈ 2× 1049

(
M(56Ni)

0.1 M�

)
erg (29)
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where 1 eV = 1.6× 10−12 erg was used. This is over 20 times smaller than the
energy deposited in the explosion, but it is released into the SN ejecta over a long
time-scale which avoids the strong adiabatic degradation of the shock-deposited
energy (which is a factor ∼ 104 for R0 = 1 R� and t = 10d).

Star SN type R0 Lpeak (Explosive, Eq 24) Lpeak (Observed)
(R�) (erg/s) (erg/s)

RSG IIP 500 6× 1041 (MM� = 10) 3× 1040 − 3× 1042

BSG II-pec 50 6× 1040 (MM� = 10) ∼ 1× 1042

WR star Ibc 5 6× 1039 (MM� = 10) ∼ 1× 1042

WD Ia 0.01 1× 1038 (MM� = 1) ∼ 1× 1043

Table 1: Peak luminosities of different SN classes predicted by shock leakage
models compared to observed ones.

One can estimate that to within factor 2 or so, radioactive powered LCs has a
peak luminosity that is close to the radioactive decay power at that time. This
is called “Arnett’s law’’

Lpeak ≈ S(tpeak) (30)

where S(t) denotes the total energy injection rate (S(t) =
∫M
m=0

s(m, t)dm).
This is useful to estimate the 56Ni mass in such SNe. For example, 56Co decay
obeys roughly

S(t) = 1.4× 1042

(
M(56Ni)

0.1 M�

)
exp (−t/111 d) erg s−1 (31)

The peak time can be estimated by equating tdiff = t, as before.

3.3 Surface temperature and spectral shape

Define the photosphere Rphot as the radius from which photons can escape freely
(τ =1, or sometimes τ = 2/3). Assume for now this is wavelength independent.
Assuming blackbody emission, we have

L(t) = 4πRphot(t)
2σTphot(t)

4 (32)

With homology Rphot(t) = Vphot(t)t so

Tphot(t) =

(
L(t)

4πσVphot(t)2

)1/4

t−1/2 (33)

For an order of magnitude estimate, take typical Lpeak = 1042 erg s−1, tpeak =
30d and Vphot = 5000 km s−1, → Tphot ≈ 5000 K. Thus, SNe peak at “optical
temperatures”.

For the radioactivity peak:
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• During pre-peak: L is increasing (and Vphot is always decreasing as more
and more layers become transparent) so Tphot either declines slower than
t−1/2 or increases.

• Around peak: L is roughly constant (the peak defines its zero derivative),

Vphot is slowly decreasing, so Tphot follows t−1/2 or somewhat slower. Hav-
ing reached peak L and the SED peaking at longer wavelengths with time
means that longer-wavelength bands peak later .

• During post-peak: L is now decreasing so rapidly that the evolution is

typically faster than t−1/2.

Figure 1 shows an observed evolution in these three phases. Typically, ob-
servations of L and Tphot are used to determine the Rphot(t) evolution, which
constrains models. At about twice the peak time, the diffusion is over and
the SN enters the nebular phase. The assumption of a photosphere emitting a
blackbody then breaks down.

Figure 1: Evolution of the light curves in different photometric bands (left)
for a radioactivity-powered Type IIb SN and (right) the Tphot evolution (black
symbols, ignore other plotted quantities). From Ergon et al. 2014.

From an observed radioactive powered light curve, can we determine M , E?
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Our observable is basically the light curve duration, which should be similar to
the diffusion time, then depending on E−1/4M3/4κ1/2. We have three variables
but only one observable so we have to come up with two more relations. The
first is easy - pick an opacity! The second is to measure some velocity and use
this to link M and E - more on this in the spectral part of the course.

4 The diffusion term

What about the energy transport term ∂l(m, t)/∂m in the 1st law of TD?

δu(m, t)

δt
= s(m, t)− ∂l(m, t)

∂m
− p(m, t)∂1/ρ(m, t)

∂t
(34)

In the diffusion limit (see stellar structure equations in Part A)

l =
(
4πr2

)2 c

3κ

daT 4

dm
=

16π2c

3κ
r4 daT

4

dm
(35)

Then

∂l

∂m
=

16π2c

3κ

∂

∂m

(
r4 daT

4

dm

)
(36)

In general, to include this we have to solve the PDE numerically. Such solutions
show the term becomes important after about 3-4 weeks for Type II SNe. The
term can also be considered in certain semi-analytic frameworks.

5 The post-diffusion phase : the radioactive tail
phase

When the diffusion phase is over (after few months) we enter the tail phase.
Here, the nebula is now so expanded and optically thin than any energy de-
posited is quickly reradiated so:

L(t) = S(t) (37)

The gamma rays from radioactive decay are not trapped forever : in fact for
most SNe already at the beginning of the tail phase they start to leak out. Thus,
for Type II-pec, Ibc, and Ia SNe, there is another constraint available here from
the degree of trapping observed - this depends on the ejecta optical depth to
gamma rays τγ ∝Mv−2

maxt
−2 ∝M2E−1t−2.

For Type IIP SNe, observations in the tail phase are needed to determine the
56Ni mass - this is not making itself straightforwardly known during the diffu-
sion phase as it does for the other SN classes (see Arnett’s law).
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Figure 2: The bolometric light curve of SN 1987A from explosion to 1500 days
later. The progenitor was compact (50 R�) so the shock deposited energy was
rapidly adiabatically degraded and the light curve was initially fast declining.
Decay by 56Ni/56Co then gave a radioactivity powered diffusion with peak at
around 80d. The tail phase started at around 150d when output closely followed
the radioactive input. Gamma rays started leaking out at around 400d. After
1000d, 57Co and 44Ti started affecting the light curve. From McCray 1993.

Going to times beyond ∼2y after explosion, other radioisotopes than 56Co may
start to affect the light curve (e.g. 57Co, 44Ti), as can other source of energy
such as circumstellar interaction or energy input from the central neutron star.
Most SNe are however difficult to observer so late, so the very late phases are
little explored. An exception is the nearby SN 1987A (Fig. 2).
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6 The opacity of supernovae

Opacity is a key quantity that directly affects the degree of trapping of radiation
and from that both light curve durations and brightness levels. It is therefore
important to understand its behavour and typical values.

The interaction of photons and matter is dominated by photon-electron in-
teractions. The electron can be free or bound in an atom, molecule or dust grain.
We will consider four main processes: electron scattering, free-free absorption,
photoionization and line absorption.

6.1 Electron scattering

In the frame of the electron, for Ephoton � mec
2(511 keV), to good approx-

imation photons scatter, i.e. change direction but not energy. This is called
Thomson scattering. This is for most SNe an important source of interaction.

The cross section is wavelength-independent (“gray”) : σT = 6.7 × 10−25 cm2.
Then, letting ne denote the number density of free electrons and nnucleons the
number of protons and neutrons, free and bound, per unit volume:

κes =
neσT
ρ

=
nnucleonsYexe
nnucleonsmp

= 0.4Yexe cm2g−1 (38)

where Ye = ne/(nnucleons) = (1− η) /2 is the electron fraction, xe = ne/natoms/ions
is the ionization degree (0-1). Examples:

• Pure H, fully ionized : Ye = 1, xe = 1, → κes = 0.4 cm2g−1.

• Pure He, singly ionized: Ye = 0.5, xe = 0.5, → κes = 0.1 cm2g−1.

All elements except H have Ye ≈ 0.5. If half ionized, κes = 0.1 cm2 g−1. This
is an often used value of κes when little else known.

At Eγ & mec
2, the recoil energy of the electron becomes a significant fraction

of the energy budget: the scattering becomes incoherent as the photon loses
a significant fraction of its energy to this recoil motion. In this limit (called
Compton scattering), the cross section is smaller, declining with energy. At
Ephoton = 1 MeV is is about 1/3 of σT .

How long is a SN of mass M and kinetic energy E optically thick to electron
scattering?

τes = κesρR = κes
M

4π/3R2
= κes

M

4π/3v2
maxt

2
= κes

M2

40π/9Et2
(39)

Putting τes = 1 we get

testhick = 120d (κes0.4)
1/2

MM�E
−1/2
51 (40)
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But Type IIP SNe have MM� ≈ 10 and then we get tthick = 1600d. We know
that they become optically thin to electron scattering much earlier, around 100-
200d when they enter the tail phase. The reason for the discrepancy is that
they continously recombine, so κes0.4 ∼ 1 is not accurate. By 200d, xe ∼ 0.01,
which brings κ0.4 down to ∼0.01, and testhick down to 195d.

What about Type Ia SNe? They have ∼ 1 M� ejecta of mostly iron. Spectra
tell us ejecta are roughly doubly ionized, so xe ∼ 2/26 = 0.08, so κes = 0.016,
and testhick ≈ 25d. Similar parameters hold for Type Ibc SNe, so we conclude
these remain optically thick with respect to electron scattering for a few weeks.

6.2 Free-free absorption

A photon can be absorbed by an electron in the presence of a third positively
charged body such as a proton or a He+ ion. Averaged of a thermal distribution
of electrons:

κffλ = 0.8T
−1/2
4 λ3

µm

(
1− e−hc/λkT

)( ne
1013 cm−3

)
Z2A−1 cm2g−1 (41)

Here T4 = T/104K, Z is the charge of the ion and A its atomic number. Two
important properties are:

• For a blackbody field the bulk of radiation has hc/λ ≥ kT , so the 1 −
exp (−hc/λkT ) term is close to unity.

• While κes is independent of ne, κ
ff
λ is proportional to it (due to its 3-

body nature). The opacity then evolves more rapidly in time, declining
(because ne has a rapid decline as approximatelty ∝ t−3) unless T would
decline more rapidly than t−6 to offset.1

In practice, free-free absorption plays only a secondary role for energy transport
for the following reason; the density needs to be high for κff to be large, but at
high density, i.e. early on in the SN evolution, the temperature is also high and
then λ3

µm for the radiation field is small. Thus, in no regime are both of these
factors favorable at the same time.

Free-free opacity plays, however, an important role for what light emerges
in the infrared. For example, at λ & 10 µm the SN can remain optically thick
for many months.

6.3 Photoionization

A photon can eject a bound electron in a photoionization, if Ephoton > Ebinding.
This is also called bound-free absorption. For hydrogen and hydrogenic ions

σpiλ ≈ 10−17

(
λ

λ0

)3

cm2 (42)

1We know however, e.g. from the adiabatic limit solution (T ∝ t−1) that this is not the
case.
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where λ0 is the ionization threshold (= hc/Ebinding), which is 912 Å for the
ground state of hydrogen. Then, for H at λ < λ0 (the opacity is zero for
λ > λ0)

κpiλ =
σpiλ (1− xe)

mp
= 6× 106(1− xe)

(
λ

λ0

)3

cm2g−1 (43)

Clearly, as long as even a minor amount of H is neutral (1− xe & 10−7), κpiλ is

much larger than both κes and κffλ at wavelengths close to threshhold. Some
other element thresholds:

Element λ0

He I 504 Å
O I 912 Å
O II 353 Å
Fe I 1568 Å
Fe II 766 Å
Fe III 404 Å

Table 2: Photoionization ground state threshholds for some common atoms and
ions.

If the radiation field peaks in the UV (. 1500 Å) where many photons are
at wavelengths below the threshholds, photoionization can be expected to be
important. From Wien’s displacement law, λpeak = 0.29/T cm, giving T &
20, 000 K for this condition. However, at higher T the atoms tend to be in
higher ionization states for which the threshhold energies are larger.

At later times the gas becomes more neutral (1−xe → 1) and one might ex-
pect κpi to gain in importance. However, then T � 20, 000 K and few photons
have enough energy. As for free-free absorption, two conditions are required
which are not easily met at the same time in the SNe and therefore photoion-
ization plays a limited role for the energy transport. While free-free absorption
still played a role for the emergent IR light, photoionization plays a correspond-
ing role for emergent UV light.

Excited states. The thresholds λ0 move to longer wavelengths for photoioniza-
tion from excited states, e.g. n=2 in H I has a threshold at 3646 Å. A significant
fraction of photons have such energies for T & 5000 K. However, the number of
atoms in these excited states is typically much smaller than in the ground state.

Figure 3 shows a figure illustrating optical depths arising from the opacities
discussed so far in a toy model for a Type II SN at 150d.

6.4 Line absorption

A photon can be absorbed and cause a photoexcitation of a bound electron from
a lower state l to an upper state u. This is also called a bound-bound transition.
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Figure 3: Optical depths in continuum processes in a model for a Type II SN at
150d. Blue: photoionization, green: electon scattering, black: free-free. From
Jerkstrand 2011.

The cross section can be written

σbbλ = Φ0φ(λ− λ0) (44)

where φ is the line profile (unit cm−1), which is normalized so
∫ +∞
−∞ φdλ = 1.

The strength of the line is given by the parameter

Φ0 =
hλ0

4π
B (45)

where B is the Einstein absorption coefficient (unit cm2 ster erg−1 s−1), which

can be of order 1010 for strong lines, giving Φ0 ∼ 10−22 cm3 in the optical. Ther-
mal broadening is of order vth =

√
kT/mp ∼ 1 km s−1, or ∆λth = λ0vth/c ∼

0.01 Å(taking λ0 = 3000 Å), so σbb ∼ 10−12 cm2 for a strong line if we take
φ ∼ 1/∆λ. Then, for a box-like profile

κbbλ0 =
σbb

mp
=
hλ0

4π
B

1

∆λthmp
∼ 1012 cm2g−1 (46)

A line can provide huge opacity over its profile, 1012 times electron scatter-
ing, but if the photon field covers say 104 Å, only a fraction 0.01/104 = 10−6

would have the precise energy needed to interact with the line. It is clear that
to understand line opacity, we must obtain information on the total number
of lines with significant opacity - if there are only a few they will not be able
to play a role, but if there are thousands or millions of them they are able to
provide opacity over most of the wavelengths of the radiation field.
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The excited atom typically relaxes back by spontaneous emission (rate A s−1,
where A is the Einstein emission coefficient), either in the same transition (“res-
onance scattering”) or in a set of branching ones (“fluorescence”). It can also
be collisionally deexcited by a free electron (“thermalization”), but the chance
of this is typically quite small.

6.4.1 Expansion effects

There are three frames of relevance for understanding the link between the SN
flow and and the effect of Doppler frequency shifts introduced by this motion :
the SN centre-of-mass frame , the comoving frame, and the interaction
frame.

• The centre-of-mass frame is the frame in which the net velocity vector
disappears. It equals the observer frame apart from any bulk motion of
the SN towards or away from us.

• The comoving frame is the frame (varying from point to point) where the
net velocity of particles is zero : thus the frame is moving along with the
bulk velocity of the gas at the given point.

• The interaction frame is the frame in which the absorbing/scattering par-
ticle is at rest : it differs from the comoving frame because of the particular
thermal motion of the particle.

Material from an explosion, like the galaxies in the Universe (from Big Bang)
or the layers in a supernova, move at different velocities described by homology
v ∝ r. One may show that in such homologous flows, each point sees the other
points moving radially away from it with velocity proportional to the distance
(think of Hubble’s law for galaxies). If a photon is emitted at a comoving
wavelength λ1 at point 1, when it arrives at point 2, moving away from point 1
with relative velocity ∆v, it will have a redshifted comoving wavelength

λ2 = λ1

(
1 +

∆v

c

)
(47)

Thus, as a photon travels from point to point, it is continously redshifted in
each local, comoving frame.

Consider what this means for transfer through lines. If emitted in a frame
with comoving wavelength λstart, the photon will come into resonance with a
line at λ0(> λstart) only after travelling a distance corresponding to velocity
difference ∆v = c × (λ0/λstart − 1). Giving the line profile a finite width ∆λ
(given by thermal motions), the interaction region is a small length interval
corresponding to where the comoving wavelength is in the range λ0 −∆λ/2 to
λ0 + ∆λ/2. This length is called the Sobolev length.

In supernovae v/c ∼ 0.01 − 0.1. This is much larger than the thermal line
widths: vth/c ∼ 10−5. This means that
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A The Sobolev length is much smaller than the radial scale of the SN and a
given photon interacts in a small local region with any given line.

B A photon can sequentially come into resonance with many lines, at se-
quential points along its path. If there is a distance vedge to the edge
of the nebula (as perceived from the emitting frame), the photon will be
exposed to absorption by all lines with rest wavelengths lying in the range
from λstart to λstart × (1 + vedge/c).

Property (A) means a simplification of the line transfer process as each
interaction can treated as a local event and whether absorption happens or not
depends just on local gas conditions, and there is no dependency on detailed line
profile shapes. Property (B) means a complication compared to static nebulae,
where any given photon only interactions with a single line, as we here we have
to consider multiple ones.

A) Local line interaction (The “Sobolev limit”).The photon will ’tra-
verse’ the line profile over a length LSob = vth/(dv/dr), where dv/dr is the
velocity gradient. As v = r/t in homology, dv/dr = 1/t and LSob = vtht. As
vth � v this region is small compared to the size of the SN. For a top-hat line
profile (φ = 1/∆λth):

τSob = σnlLSob =
hλ0

4π
B

1

∆λth
× nl ×

∆λth
λ0

ct =
hc

4π
Bnlt (48)

One can show that this holds for any line profile. The optical depth depends
only on the local number density (nl) at the point of resonance. Ignoring changes

in ionization/excitation, nl ∝ t−3, so τSob ∝ t−2 .

B) Expansion opacity. If there is a typical velocity separation ∆vsep
between optically thick lines around wavelength λ, the mean-free path is λmfp =
∆vsept (note we use now λ for both mean-free-path and wavelength, the former
has a mfp subscript). Write ∆vsep = c∆λsep/λ. Then, since κ = 1/(λmfpρ),

κline,expλ ≈ λ

ctρ∆λsep
(49)

A more refined formula can be obtained from knowing the probability that line
i interacts is 1− exp

(
−τ iSob

)
. Then refine the formula as

κline,expλ ≈ 1

ctρ

1

N

N∑
i=1

λi
∆λi

(
1− e−τ

i
Sob

)
(50)

where the set of N lines have to be chosen over some wavelength range centred
on λ.

This is called an expansion opacity. Figures 4 shows an illustration. Note
that this is not an exact local opacity like the other ones - this is because

18



line interaction is not a continuous process but occurs at discrete points in
the Sobolev limit. As opacity can only be defined as some integral/summation
over lines, there is always some degree of arbitrariness how this is done - N is
basically a free parameter in Eq. 50. Line opacity is together with Thomson
opacity typically the most important in SNe.

6.5 What happens to the energy?

Consider now Table 2, summarizing what happens to the radiative energy fol-
lowing an absorption. Three things can happen : 1) reemission of the photon
(scattering or fluorescence), 2) thermalization (photon energy goes to kinetic
energy of particles), or 3) raising the potential energy of gas particles.

In many situations Thomson scattering and line absorption are the dominant
opacities. But neither of these couple strongly to the thermal energy of the gas
- the photon tends to get reemitted again. Even if they happen less often,
free-free and bound-free absorption play an important role in providing this
coupling, which resets the distribution and brings conditions close to “local
equilibrium” where the radiation field obtains a temperature linked to the local
gas temperature.

Process Scattering/Fluorescence Thermalization Potential energy
Thomson 100% 0% 0%
Free-free 0% 100% 0%

Bound-free 0% Part Part
Line Mostly Minor 0%

Table 3: A summary of the fate of the radiative energy following an absorption.

Finally, for line absorption fluorescence is often a more frequent deexcitation
process that scattering back into the same transition (Fig. 5). Complex fluores-
cence means the emergent spectra of SNe are, in detail, complex to model. In
particular at late times several years after explosion, models have shown that
the whole optical spectrum of SN can come from fluorescence of UV emission.

7 Line formation in early (“photospheric”) phases

Because v = rt, all points on a sheet perpendicular to the line of sight (LOS)
have the same LOS velocity and give the same Doppler shift relative to the
observer (Fig. 6). If the sheet is emitting in a line with rest wavelength λ0, the
observer will see emission at wavelength λ0 × (1 + vlos/c), where positive pro-
jected velocity vlos is defined to be away from the observer. If the line absorbs,
the sheet is capable of blocking photons at that wavelength, in the observer
frame, travelling from the region it covers from the observer.

The scattering atmosphere (also called the Schuster-Schwarzschild model) is a
simplified model framework where blackbody radiation is emitted from an inner
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boundary - the photosphere - and then scatters (by electron scattering and
line scattering) in the outer layers. It is a simplified concept because in a real
supernova

• The location of the photosphere (formally defined as where optical depth
integrating from outside in is τν = 2/3) varies with frequency.

• Even for a fixed frequency, the photosphere does not sharply divide into
a scattering only region on the outside and a thermalization only region
on the inside.

In fact, advanced radiative transfer models for SN spectra do not rely on the
scattering atmosphere ansatz but model also the transition region and the deeper
layers. Nevertheless, it is a framework that allows a good understanding of the
basic processes forming the spectrum, and rough spectral models to be devel-
oped that by comparison with observations allow reasonably accurate estimates
of the density profile and composition of the scattering layer. It is the founda-
tion for the open-source supernova spectral modelling codes SYNOW/SYN++
(Thomas 2011) and TARDIS (Kerzendorf & Sim 2014).

Consider a scattering atmosphere where line absorption is treated in the Sobolev
limit. We will study what line profile arises from a single optically thick line
(τSob � 1), with the two parameters h = vphot/vmax, where vmax denotes the
maximum velocity at which the line is optically thick, and ε, the “destruction
probability” (probability 1− ε for scattering).

Consider Fig 7. We delineate two cases.

• Case I. h < 1/
√

2 = 0.71. The photosphere is fully blocked by certain
sheets (in B region) → complete absorption at the Doppler velocity of
those sheets.

• Case II. h > 1/
√

2. The photosphere is never fully blocked blocked by a
sheet → only partial absorption.

The ABC regions behave as following:

• Region A: The whole resonance sheet covers (part of) the photosphere.
The area of the sheet grows going inwards (towards the rest wavelength),
giving a deeper absorption as a larger fraction of the photosphere gets
blocked.

• Region B-Case I: (Part of) the resonance sheet covers the whole photo-
sphere. Complete absorption is produced throughout B.

• Region B-Case II: The (whole) resonance sheet covers part of the photo-
sphere. The sheet area is constant, giving a flat bottom in the absorption
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profile but at non-zero flux. The absorption depth increases with decreas-
ing h.

• Region C. Part of the sheet covers part if the photosphere. A declining
fraction of the photosphere is blocked moving towards the centre, giving
declining degree of absorption moving towards the rest wavelength.

The bottom panels in Fig. 7 show the resulting line profiles. We see that

• Destructive line (ε = 1). Absorption starts at −vmax and reaches the
minimum at −vphot. It has a flat minumum that is either at flux zero,
for Case I, or flux

√
1− h2/h2, for Case II. The degree of absorption then

gradually declines towards the rest rest wavelength in region C.

• Scattering line (ε = 0). Absorption is the same but now reemission adds
the green flux distribution. The location of the minimum does not change.
For redshifted photons from the receding side of the SN, some scattered
photons are blocked by the photosphere, so the maximum possible redshift
is λ0×

(
1 + vmax ×

√
1− h2/c

)
. The peak is at zero shift which means the

line can be readily identified.

An important point is that absorption of photons can only remove flux on
the blueshifted side of the line profile : all layers that have some blockage of
the photophere are necessarily on the side towards the observer and thus have
blueshifted resonance frequencies. On the other hand, reemission of absorbed
photons can add flux both at blueshifted and redshifted wavelengths: scatter-
ing in sheets moving away from the observer give a redshifted emission and this
emission reaches the observer unless the region is blocked by the photosphere.

Observing such lines, it appears one could determine both vmax and
vphot in this framework : vmax from the maximum blueshift absorp-
tion, and vphot from either the maximum redshift emission or the AB
minimum (Case I) or BC minimum (Case II). In addition, once vmax
and vphot are known, ε can be determined from the flux peak value at
λ0.

Knowing vmax one may be able to determine the density of the element at
that velocity by equating the line optical depth to unity there. One should
note, however, than in more realistic models the interpretation of line profiles
can be more complex (see e.g. Fig 6 in Sim 2017). The line optical depth is
a function of velocity and does not give a sharp boundary as here. Also, there
may be emission in the line, in the atmosphere, by additional processes than
resonance scattering

These kind of line profiles are called “P-Cygni” after their initial observa-
tions in the LBV star “P-Cygni” which has an atmosphere of rapidly outflowing
gas producing lines like these.
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Figure 9 shows an example of observed P-Cygni lines (from He I) in a Type IIb
SNe. In the first spectra the lines are not present so apparently He I was not
present in sufficient amount in the atmospheric layers then (perhaps ionized to
He II, or perhaps the lower levels in He I were not excited enough). But from
10-15d the lines start to emerge. The peaks are close to the rest wavelengths,
as predicted. One can quite clearly read out a maximum absorption blueshift
of vmax ≈ 11, 000 km s−1. Determining a maximum redshift emission is more
difficult. The location of the minimum varies between the three lines, and with
epoch. By comparing to Fig 7, can one estimate h?

7.1 Line broadening

We have so far assumed that scattering has been fully coherent in the comov-
ing frame, so the photons just change direction but not frequency. While this
is an accurate description in the interaction frame (for the type of interac-
tions currently being considered), the interacting particle has a thermal veloc-

ity in the comoving frame. This thermal velocity is vtherm ≈
√

3kT
m (from

3/2kT = 1/2mv2), where m is the mass of the particle. For an atom this is

vatomtherm = 11 km s−1 (T/5000 K)
1/2

A−1/2, where A is the atomic number. This
is negligible compared to the Doppler broadening occurring due to the SN ex-
pansions which is typically several thousand kilometers per second.

For an electron, however, it is ve−therm = 480 km s−1 (T/5000 K)
1/2

. Thus elec-
tron scattering, especially repeated ones, is capable of broadening (emission)
lines with & 103 km s−1. This is still quite a minor effect in SNe emitting lines
from regions moving with several thousand kilometers per second. But some
SNe, in particular Type IIn, emit lines also from slower-moving material, ∼ 100
km s−1. If these layers are hot, the line profiles may become determined by
thermal broadening rather than expansion broadening.

8 Line formation in late (“nebular”) phases

At later times (& 50 − 150d), the photosphere disappears and we enter the
nebular phase. Now, the spectrum consists of emission lines. As powering comes

from radioactivity, emission comes mainly from the inner regions where 56Ni re-
sides. Figure 10 shows an example of an observed nebular spectrum illustrating
the quite different nature to photospheric spectra.

8.1 Line profiles

Let us consider line profiles of emission lines arising for a few simple cases of
geometry. Figure 11 shows line profiles in six cases, of which we comment on
three:
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• Uniform sphere (upper left). Letting vp denote the component of
vmax perpendicular to the line-of-sight, each sheet contributes flux at
wavelength λ0vlos/c in proportion to its area which grows as π (vpt)

2
=

πt2
(
v2
max − v2

los

)
= πt2v2

max

(
1− (vlos/vmax)2

)
. The line profile is there-

fore a parabola.

• Thin shell (upper middle). A slice of a shell can be shown to give a
constant area, so the line profile becomes a flat top.

• Gaussian (bottom left). One can show that also the line profile becomes
a Gaussian.

For further details of the derivations see Jerkstrand 2017, Handbook of SNe.

8.2 Luminosity

The emissivity in a line is

j =
1

4π
nuhνAβSob erg s−1cm−3 (51)

where nu is the number density of the upper level of the line, A is the Einstein A-
coefficient (rate of deexcitation, dont confuse with atomic number) and βSob =
(1−e−τSob)/τSob is the Sobolev escape probability : the chance that an emitted
photon will escape the local line resonance region rather than be reabsorbed.
Consider two limits

• Optically thin line (βSob → 1). The total volume-integrated luminosity
is then L = 4πj×V = NuhνA = Mion

µion
× f(T, ne)hνA, where the function

f(T, ne) determines what fraction of the ions of this type are in state u.
If this can be estimated, one may then be able to determine the mass of
the ion.

• Optically thick line(βSob → 1/τSob). Then total luminosity is now
L = V × nuhνA

hcBnlt
. Because B can be related to A, this can be written

L = V × t−1 × g(T, ne) where the function g determines the ratio of
populations in levels u and l. Thus, if this can be estimated one can
determine the volume of the emitting region.

To get either a mass or volume then, we need to know what fraction of atoms
for that ion is in the upper state (optically thin case), or what the ratio of upper
and lower state populations (optically thick case) are.

At high electron density, collisions dominate population and depopulation of
states, and then the f and g functions depend only on temperature (“Local
Thermodynamic Equilibrium (LTE)” limit). Thus, in this limit only T needs
to be estimated. However, one should be careful: the f and g factors have
exponential dependencies on temperature. Thus, if ∆E � kT , where ∆E is the
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excitation energy of the upper level Eu for optically thin lines and Eu − El for
optically thick ones, even small errors in the T estimate can give very different
factors. The result will only be meaningful if ∆E . few× kT .

How can T be estimated? One way is from line ratios from levels with dif-
ferent excitation energies. For example, [O I] 6300, 6364 and [O I] 5577 come
from levels 4 and 5 in O I, respectively. Level 4 has an excitation energy of 2.0
eV and level 5 4.2 eV, so a difference of 2.2 eV. If both lines are in LTE and
optically thin, their luminosity ratio is

L5577

L6300,6364
=

n5A5577

n4A6300,6364
=

5

1
× exp

(
−2.2 eV

kT

)
× 180 (52)

where the 5/1 is the ratio of statistical weights and 180 is the ratio of A-values.
Thus, an observed line ratio can give a T estimate.

At lower densities radiative deexcitations tend to dominate collisional ones and
then LTE does not hold. Then, balancing collisional excitation from the ground
state (where most atoms reside) with radiative decay gives

C(T )ngroundne = nuAβSob (53)

where C(T ) is the collisional excitation rate (cm3 s−1). Thus, to know nu here
one needs to have an estimate for both T and ne. nground can be approximated
with the total atom number density.

8.3 What sets the physical conditions (T, ne)?

The flow of energy in the SN in the nebular phase is as follows. Radioactivity
deposits a certain amount of energy per unit volume and time in the form of
gamma-ray Compton scattering on free and bound electrons. This creates a
population of MeV Compton electrons, also called “non-thermal electrons” -
that transfer their energy to the gas by ionizing, exciting and heating it as they
bounce around. The ionized, excited and heated gas then emits radiation by
recombination and line emission. Free-free emission is neglegible. One can show
that conditions close to thermal balance prevail so the SN quickly reradiates
what was deposited, therefore L = S(t).

The dominant radiation channels are typically low-lying, forbidden line tran-
sitions in abundant atoms that easily become excited by thermal electron colli-
sions - this is how the gas cools, and typically of the three deposition channels of
the Compton electrons (ionization,excitation,heating), heating is the dominant
one so cooling by thermal electron collisions is the dominant reemission process.
The gas is typically weakly ionized so mostly neutral and singly ionized atoms
are present and produce the emission (also doubly ionized in Type Ia SNe).
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Figure 4: Top: Opacities in a Type IIP SN layer at 11,000 km/s at t = 15d.
Bottom: Thomson opacity and line opacity in two layers in a Type Ia SN around
maximum light. From Sim 2017.
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Figure 5: Fluorescence redistribution in a model of SN 1987A at an age of 8
years. From Jerkstrand et al 2011.
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Figure 8: An observed SN spectrum showing P-Cygni lines (bottom curve, top
ones are models). From Ergon+2014.
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Figure 9: Observed evolution of He P-Cygni lines in a Type IIb SN. From Ergon
et al 2014.
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Figure 10: Example of an observed nebular spectrum from a low-velocity Type
IIP SN, from Benetti et al. 2001. As the photosphere has disappeared there
are no P-Cygni lines, instead the spectrum is made of emission lines, some of
which are very prominent. Models show that what looks like “continuum” (e.g.
between 6600-7000 Å) is in fact thousands of overlapping weaker emission lines.
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Figure 11: Nebular line profiles for 6 different cases. From Jerkstrand 2017
(Handbook of SNe).
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