
Part F

Supernova observations and analysis


Section 2: H-poor supernovae

(Type IIb/Ib/Ic/Ic-BL) 
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Dessart 2011

Stripped-envelope SNe : Fast rise (few weeks) and bright peak (~ 109 Lsun)
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Settle on radioactive tail after about 50dTypically peak

at a few times


1042 erg/s

https://ui.adsabs.harvard.edu/abs/2011MNRAS.414.2985D/abstract


Characteristic dataset (SN 2009jf)

Valenti 2011

SN up during daytime —> observational gap P-Cygni lines, broader 

than in IIP SNe.
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UV

blue

red

NIR

https://ui.adsabs.harvard.edu/abs/2011MNRAS.416.3138V/abstract


Type IIb 

Weak H lines 

Most famous: 
SN 1993J

Type Ib 

No H lines 

Most famous: 
SN 2008D

Type Ic 

No H or He lines 

Most famous: 
SN 2007gr

Type Ic-BL 

No H or He lines, 
all lines broad 

Most famous: 
SN 1998bw

Stripped-envelope SN classes
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SN 1998bw

SN 1993J in radio



Spectral differences Type Ib vs Type Ic

Gal-Yam 2017

Ib

Ib

Ic
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(Ib)
(Ib)

(Ic)
Search for P-Cygni absorption 

features (blue side of line) in 
three He lines with rest 

wavelengths 5876 Å, 6678 Å, 
and 7065 Å.

https://ui.adsabs.harvard.edu/abs/2017hsn..book..195G/abstract


Spectral differences Ic vs Ic-BL

Ic

Ic-BL

No firm definition of the “border” 

between Type Ic and Type Ic-BL :

roughly when absorption at over

15,000 km/s is seen one uses Ic-BL.
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Spectral differences IIb/Ib/Ic/Ic-BL

Pian 2017

Ha 6563

Si II 6355

He 5876 
He 6678 

He 5876 

(Ic-BL)

(Ic)

(Ic-BL)

(IIb)
(Ic)
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The photospheric velocity decreases

 rapidly during rise.

Then a slower decrease

as the SN moves towards 


the nebular phase.

https://ui.adsabs.harvard.edu/abs/2017hsn..book..277P/abstract


Taubenberger 2011

Time evolution of P-Cygni minima

Fe II 5169 is the line operating closest

to a simple P-Cygni model : this minimum 

is best proxy for vphot.
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https://ui.adsabs.harvard.edu/abs/2011MNRAS.413.2140T/abstract
https://ui.adsabs.harvard.edu/abs/2011MNRAS.413.2140T/abstract


Stripped-envelope SN light curves

Rise time is a few weeks.


Peak luminosity : log L = 42 - 43 erg/s.


Discussion points: 

1) What does it tell us that Ic-BL SNe are 
both brighter and have higher velocities? 

2) What could differ between Ib and Ic 
progenitors?

9Pian 2017

https://ui.adsabs.harvard.edu/abs/2017hsn..book..277P/abstract


Milisavjlevic 2013

Stripped-envelope SN light curves

Sometimes a “cooling phase” 
(powered by shock deposited energy) seen. Can diagnose .


But for most SNe the light curve is already rising

(56Ni-powered diffusion phase has begun) within a few days


of the explosion.

R0

Bersten 2017 10

https://iopscience.iop.org/article/10.1088/0004-637X/767/1/71/pdf
https://ui.adsabs.harvard.edu/abs/2017hsn..book..723B/abstract
https://ui.adsabs.harvard.edu/abs/2017hsn..book..723B/abstract


IIb/Ib/Ic SNe have similar peak brightness distributions. 

Ic-BL tend to be brighter.

Prentice 2019

IIb Ib

Ic Ic-BL
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https://ui.adsabs.harvard.edu/abs/2019MNRAS.485.1559P/abstract


No differences in light curve width distributions between IIb/Ib/Ic/Ic-BL SNe

t−1/2 ∼ 10d

t+1/2 ∼ 15d
FWHM ∼ Δt ∼ 25d

Factor ~2 variation in light curve width.


A higher  correlates with a higher  (not shown here).t−1/2 t+1/2

Prentice 2016, 2019

IIb

Ib

Ic

Ic 
BL
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https://ui.adsabs.harvard.edu/abs/2016MNRAS.458.2973P/abstract
https://ui.adsabs.harvard.edu/abs/2019MNRAS.485.1559P/abstract


IIb Ib

Ic Ic-BL

Full gamma-ray trapping: 
0.01 mag/d

No differences between classes in late-time declines rates

Exercise set 2 : calculate the minimum and 

maximum possible decline rates.


What does a typical decline rate of 0.017 mag/day

tell us?

13Prentice 2019

Decline rates at 100d:

https://ui.adsabs.harvard.edu/abs/2019MNRAS.485.1559P/abstract
https://ui.adsabs.harvard.edu/abs/2019MNRAS.485.1559P/abstract


From diffusion phase light curves: ejecta masses of  inferred1 − 5 M⊙
Our light curve duration formula from Part E:





From spectra, singly or doubly ionized species —> 





One may try to eliminate  by linking  and  by measured

 ,  but quite difficult to get a robust result.


No clear difference in ejecta mass inferred between the classes. 

Advanced model fittings give similar results.

Δt ≈ 20d E−1/4
51 M3/4

M⊙κ1/2
0.2

κ ≈ 0.05 cm2 g−1

Δt = 25d, κ = 0.05 cm2 g−1 → M = 3.5 M⊙ × E1/3
51

E51 M E
vphot(t)

IIb Ib

Ic Ic-BL

Inferred Type Ibc ejecta masses 
are 1-5 Msun: Not explosion of 

massive Wolf-Rayet stars?
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Prentice 2019

https://ui.adsabs.harvard.edu/abs/2019MNRAS.485.1559P/abstract


Drout 2011

Lyman 2016

Ejecta masses of  inferred1 − 5 M⊙
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Individual studies sometimes finds differences between the classes, but no such difference has been

consistently confirmed by multiple studies.

https://ui.adsabs.harvard.edu/abs/2011ApJ...741...97D/abstract
https://iopscience.iop.org/article/10.1088/0004-637X/741/2/97/pdf
https://ui.adsabs.harvard.edu/abs/2016MNRAS.457..328L/abstract
https://ui.adsabs.harvard.edu/abs/2016MNRAS.457..328L/abstract


SESNe appear to produce more 56Ni than Type II SNe.

Ic-BL SNe may make more 56Ni than the other subclasses.
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Prentice 2016

https://ui.adsabs.harvard.edu/abs/2016MNRAS.458.2973P/abstract


Shigeyama 1990.

Modelling SESN light curves

As for SN 1987A, in many cases is significant mixing of 56Ni needed to make good-fitting light curves.
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https://articles.adsabs.harvard.edu/pdf/1990ApJ...361L..23S
https://ui.adsabs.harvard.edu/abs/1990ApJ...361L..23S/abstract


Modelling SESN light curves
Very early observations (first days) can constrain the progenitor radius.


A SESN progenitor is always relatively compact ( ) so shock-deposited energy contributes only for  few days

because of adiabatic cooling ( ).

R0 ≲ 200 R⊙ ≲
Eint ∝ R0/R(t)

Bersten 2012

The Type IIb SN 2011dh had a progenitor radius

of ~250 Rsun according to these model fits


(which is one of the largest R0 inferred for any SESN).
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https://ui.adsabs.harvard.edu/abs/2012ApJ...757...31B/abstract
https://iopscience.iop.org/article/10.1088/0004-637X/757/1/31/pdf
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Direct progenitor detections of SESNe confirm more compact stars than RSGs

Gilkis 2022

So far 5 Type IIb SNe 

and 2 Type Ib SNe (iPTF13bvn and 2019yvr)

Yellow 
supergiants

He giants?

SN 1987A

(BSG)

https://ui.adsabs.harvard.edu/abs/2022MNRAS.511..691G/abstract
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Direct progenitor detections of SESNe

Gilkis 2022

SN  
1987A

RSGs 
that  

explode

RSGs

https://ui.adsabs.harvard.edu/abs/2022MNRAS.511..691G/abstract
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Binary mass transfer appears most plausible explanation for progenitors

Eldridge & Maund 2016

Companion a low-mass,

dim star.

Exploding star a 

MZAMS=10-12 Msun star 


ending as a 2-3 Msun 
He giant after mass


transfer to a 

companion star.

iPTF13bvn : a typical binary model progenitor system:

https://ui.adsabs.harvard.edu/abs/2016MNRAS.461L.117E/abstract


Higher E —> 

•Faster rise ( )

•Brighter peak (Arnett’s law 

with shorter )

•Faster decline ( )

Δt ∝ E−1/4

Δt
τγ ∝ E−1

Stronger mixing —>

•Faster rise

•Faster decline

Modelling SESN light curves
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Bersten 2012

https://ui.adsabs.harvard.edu/abs/2012ApJ...757...31B/abstract


For fixed E, and (quasi)-fixed 56Ni mass,
higher ejecta mass means broader light
curves. Here range is 1.7-5.0 Msun.

For fixed M, and (quasi)-fixed 56Ni mass,
higher explosion energy means narrower light
curves. Here range is 0.6-5 Bethe (CàD).

Dessart 2016

Modelling SESN light curves
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https://ui.adsabs.harvard.edu/abs/2016MNRAS.458.1618D/abstract
https://ui.adsabs.harvard.edu/abs/2016MNRAS.458.1618D/abstract
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Testing analytic approximations against detailed numeric models

In units of solar masses and 1E51 erg



Testing Arnett’s law

Arnett's law ( ) can be 
compared to advanced light curve models.


This particular model grid indicates that the 56Ni 
mass inferred by Arnett’s law is 30-60% too high.


This is important to be aware of because sample 
analyses tend to use simple analytic models like 
Arnett’s - and there can be systematic errors.

L(tpeak) = S(tpeak)

25Dessart 2016

https://ui.adsabs.harvard.edu/abs/2016MNRAS.458.1618D/abstract


Modelling SESN photospheric spectra

Branch 2002

SYNOW/SYN++ : Parameterise abundances 

in scattering atmosphere ansatz and fit. Useful to identify 

lines. Another, more sophisticated code, is TARDIS.
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https://iopscience.iop.org/article/10.1086/338127/pdf
https://c3.lbl.gov/es/
https://ui.adsabs.harvard.edu/abs/2014MNRAS.440..387K/abstract


Valenti 2011

Modelling SESN photospheric spectra

27

Example of SYNOW fits

https://ui.adsabs.harvard.edu/abs/2011MNRAS.416.3138V/abstract


Are Ic SNe really He free or just He-emission free?

Dessart 2012

He lines are very sensitive to mixing. 
Strongly mixed model have strong He lines. Weakly mixed model have weak He lines.

28

https://ui.adsabs.harvard.edu/abs/2012MNRAS.424.2139D/abstract


SESN nebular spectra
Stritzinger 2009 Tanaka 2009

Line profile details depend on the 3D 

morphology of the inner ejecta


—> probe of explosion dynamics.

O

The sheet’s area determines the flux at 

the corresponding Doppler shift.


Uniform sphere —> parabolic line profile.


Observed vmax —> Metal core expands  
with  char. velocity 4000 km/s. 29

Fe

C

https://iopscience.iop.org/article/10.1088/0004-637X/696/1/713/pdf
https://iopscience.iop.org/article/10.1088/0004-637X/692/2/1131/pdf


Modelling SESN nebular spectra

As for H-rich SNe, varying MZAMS gives 
very different length  strengths for certain 

lines. [O I] 6300, 6364 is best probe of 
MZAMS.

30 Jerkstrand 2015

https://ui.adsabs.harvard.edu/abs/2015A&A...573A..12J/abstract


Modelling SESN nebular spectra

As Type IIP SNe, stripped-envelope

SNe appear to have nucleosynthesis yields


consistent with lower-mass stars

(MZAMS <~ 20 Msun).

Luminosity

in [O I] 6300, 6364


relative to

56Co decay


power.
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Jerkstrand 2015

https://ui.adsabs.harvard.edu/abs/2015A&A...573A..12J/abstract


Modelling SESN nebular spectra

Models allow to determine which stellar burning layer each line diagnoses.

Identification of two C lines that can diagnose He burning 

nucleosynthesis (O/C zone contribution to spectrum in red).
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Line expansion opacity can stay important for hundreds of days
This means UV and blue optical region needs to be modelled with radiative transfer.

τλ = κline,exp
λ ρRUniform composition:

33 Jerkstrand 2015

https://ui.adsabs.harvard.edu/abs/2015A&A...573A..12J/abstract


Modelling SESN nebular spectra
Mysterious “H ” emission recently understood to be [N II] 6548, 6583 emission from the He/N zone.α

Can show nebular line profile from a thick shell  
gives flat top with slanting sides, as observed.

He/N layer

N II !

O I

H ?α

no..

A direct probe of the degree of

shell He burning in the progenitor.

34Jerkstrand 2015

https://ui.adsabs.harvard.edu/abs/2015A&A...573A..12J/abstract


Modelling SESN nebular spectra

Can we test stellar evolution nucleosynthesis?


One example:


Models show Mg almost always mainly in Mg II form.


Then, a Mg I recombination line luminosity follows





where  is the effective (total) recombination rate 
(cm3 s-1) to the upper level.


Using Mg I 1.50 m, a pure recombination line, has 
demonstrated that massive stars indeed make the Mg 

needed to explain its solar abundance.


L = VnMgneαeff hν = MMgneαeff hν

αeff

μ

Only  determinable from other constraints —>  vs  relation ne f −1/2
O M(Mg) fO

Jerkstrand 2015
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