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Key concepts

• The definitions of the length units AU, parsec and light-year.

• The celestial sphere, and its coordinates Right Ascension and Declination.

• The coordinates for a local obersever; hour angle, elevation and siderial
time.

• Keplers laws

• Elliptical orbits and their parameters; semi-major axis, semi-minor axis,
apoapsis and periapsis.

D1

One Astronomical Unit (AU) is the (average) distance between the earth and
the sun. This distance has a value of 150 million kilometers, which is a good
number to remember when doing astronomy problems.

One parsec (pc) is the distance at which 1 AU has an angular size of 1 arc
second (=1/3600 degree)

1AU = 150 · 106 · 103m = 1.5 · 1011m

tan θ =
1 AU

1 pc
→ 1pc =

1 AU

tan θ

Now use the approximation

tan θ =
sin θ

cos θ
∼

θ

1
= θ

which is valid for small θ. Our θ is 1/3600 of a degree so its ok. We get

1pc ≈
1AU

θ
=

1AU
1

3600

2π
360

= 206, 000 AU ≈ 3.09 · 1016m

That one parsec is about 200,000 times the distance between the earth and the
sun is another good relation to remember.

A light-year (ly) is the distance that light (or any other electromagnetic wave)
travels in one year. The speed of light is 300,000 km/s. Since one year has
60 · 60 · 24 · 365 = 3.15 · 107 seconds, a light-year becomes

1 ly = 300, 000 · 3.15 · 107 = 9.45 · 1012 km = 9.45 · 1015m = 0.31 pc

D2

The sidereal time is the hour angle of the RA=0 direction. If the sidereal
time is 20 h, it therefore means that RA=0 passed above 20 hours ago. Vega
has RA=18h36m56.3s, which means that it passes above exactly that time after
RA=0 passes above. Therefore, it must have passed above 20h−18h36m56.3h =
1h23m3.7s ago. The hour angle is then positive with this value.
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D3

The Scientific Revolution is traditionally said to have begun in 1543 with the
publication of ’On the Revolutions of the Heavenly Spheres’ by Copernicus and
’On the Fabric of the Human body’ by Andreas Vesalius. Up until then, the
same natural philosophies had dominated for almost 2,000 years (!); the ones
developed in ancient Greece.

The new philosophy of science emphasized systematic observations as the foun-
dation for all progress. The first astronomer to put this into action was the Dan-
ish Tycho Brahe (1546-1601). Using only his eyes (the telescope was invented
only around 1610), he systematically began noting positions of the planets over
long periods of time. Tycho’s student was Johannes Kepler (1571-1630), who
after Tycho’s death1 found mathematical relations for how the planets moved.
His three laws are

1. The orbit of each planet is an ellipse with the Sun at one of the (two)
focal points.

2. The ’slice’ of this ellipse that the planet cuts per unit time always has

the same area.

3. The period of the orbit is related to the semi-major axis of the ellipse
as P 2

∝ a3.

This was all before Newton (1643-1727) came along and developed a theory for
gravitation and planet motion, so the laws are just observational facts.

a) Now, when we want to use Kepler’s third law, we dont need to remem-
ber the proportionality constant. We can compute it by using earth’s values;
the semi-major axis is approximately 1 AU and the period is a year. Thus

12 = const · 13 → const = 1

If we now look at the comet Halley instead, we get

762 = 1 · a3 → a = 762/3AU = 17.9 AU

b) For an elliptical orbit, the position where the distance to the closest focal
point reaches a minium is called the peri-apsis. If the ellipse refer to an orbit
around the sun, the derivative word peri-helion is used. In the same way, the
point where the distance to the furthest away focal point is reaches is called the
ap-apsis for the general case, and the ap-helion for the planetary case.

The eccentricity (e) is defined as

e =

√

1−

(

rminor

rmajor

)2

For nearly circular orbits rminor ≈ rmajor and so e ≈ 0. On the other hand, for
very elongated orbits rmajor ≫ rminor and e ≈ 1.

b) We know the perihelion and the semi-major axis. How to do this?

1Tycho almost died young when his nose was chopped off in a duel. However, he glued on

a gold nose and went on to become a legend!
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4

As the earth moves around the sun, the angle towards an astronomical object
changes with respect to a constant reference direction. Half (!) the size of the
angular change is called the parallax.

Since the stars are much farther away than the earth-sun distance, the tri-

Figure 1: The direction to a star changes as the earth is at different places in
its orbit around the sun.

angle is very close to begin ’liksidig’, and we can use

tan θ/2 =
1 AU

D
→ D =

1 AU

tan θ/2

The angle θ/2 is the parallax p. Furthermore, since D ≫ 1 AU we again use
the small angle approximation and get

D ≈
1 AU

θ
=

1 AU

0.77 · 1/3600 · 2π/180
= 268, 000AU = 1.3 parsecs

5

a) We first transform the distance to parsecs.

1pc = 3.26ly → 427ly = 131 pc

Then we use the relation between parsecs, AU and angular size in arcseconds;
one AU takes up an angular size of one arcsecond at a distance of one parsec.
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Thus
x[AU ] = D[pc]θ[arcsec] = 131 · 0.125 = 16.4 AU

b) Is it reasonable for a star to be this large; sixteen times the earth-sun orbit?
For some, yes. These are the red supergiants. The size is similar to the orbit of
Uranus at 19 AU.

The sun’s radius is about 0.01 AU. A red supergiant thus has volume that
is ∼ (16/0.01)

3
or four billions times the sun’s volume! Does it also have a mass

this large, four billion solar masses? It does not. Stellar theory predicts that
stars more massive than 100-150 solar masses cannot exist. The red supergiants
have a density about 10 million times lower than in the sun.

6

The stars move above us because the earth is rotating. If it was not, they would
be at the same spot for very long times. We can therefore give them ’absolute’
coordinates that will be accurate over any astronomers lifetime.

To specify the direction to something we need two angles; (θ, φ) in spherical
coordinates. In astronomy this coordinates system is defined in the following
manner; the z axis is parallell to the earth’s spin axis, so that the (x, y) plane
is coplanar with the earth’s equator. Then, the x axis is chosen as the direction
of then sun at a particular time of the year; the March equinox.

Any point of a sphere can then be expressed as the angle from the x-axis and
the angle from the xy-plane. These two angles are called Right Ascension

(RA) and Declination (Dec). They could both be given in normal degrees,
but traditionally slighly other units are used. The RA angle is given as a time,
where the full 360 degrees correspond to 24 hours. For example, an angle of 30
degrees would become

RA =
30

360
· 24 = 2 h

And an angle of 200.1 degrees would become

RA =
200.1

360
· 24 = 13.34 h = 13 h and 20.4 min = 13 h 20 min 24 sec

The declination is expressed in degrees, arcminutes and arcsecond. One ar-
cminute is 1/60 of a degree and one arcsecond is 1/60 of an arcminute. Thus,
an angle of 10.12 degrees can be expressed as

Dec = 10◦ and 0.12 · 60 arcmin = 10◦ and 7.2 arcmin =

= 10◦ and 7 arcmin and 0.2 · 60 arcsec = 10◦ and 7 arcmin and 12 arcsec

For a local observer, the direction to an object is given by the Hour Angle

and the Elevation. The elevation is simply the angle between the object and
the horizon. The Hour Angle is the horizontal angle (in time units just as RA)
between the object and the direction of maximum elevation (local meridian). In
the northern hemisphere, that direction is south. The hour angle is negative the
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the object has not yet passed the meridian, and positive if it has. For example,
if the hour angle of a star is -2 h it means that it will pass the local meridian in
2 hours.

a) The sidereal time is the hour angle of the RA=0 direction. Thus, when
the sidereal time is zero, the hour angle of any other object equals minus its
Right Ascension. Conversily, if the hour angle of an object is zero, a time equal
to its RA must have passed since RA=0 passed overhead.
b) The Mean Solar Time is the hour angle of the mean Sun.

7

The sun, with its special position, continously change its declination and right
ascension. When the northern hemisphere has summer, it lies above the earth’s
equatorial plane and has thus a positive declination. In winter, it lies below and
has negative declination. With a figure we easily show that the values it moves
between must be plus and minus the angle of the earth’s rotation axis. This has
a value of 23.5 degrees.

8

a) Pisces has α = +1h, δ = +15 and Gemini has α = +7h, δ = +20o. The rela-
tive directional separation is thus six hours, which is equivalent to 6/24 = 1/4 of
the arc. Then exactly half the moon will be reflecting light in earth’s direction.
b) As six months pass, the sun will have moved to the exact opposite side of the
celestial sphere, i.e. it will have α = +13h, δ = −15o. The moon, which circles
the earth with a period of one month, will be back in the constellation Gemini
with α = +7h. There is thus, also now a 90 degree separation between sun and
moon, and we will have half-moon.

9

a) The eccentricity as function of apo-apsis and peri-apsis is given by

e =
ra − rp
ra + rp

=
1861− 1839

1861 + 1839
= 0.0059

b) The period is related to the semi-major axis (which is the same as the apo-
apsis) by Kepler’s law

P 2 = R3

where P is in years and R is AU. We get

P =

(

1861

150 · 106

)3/2

= 4.37 · 10−8 y =

2

Key concepts

• The resolution of a telescope : its theoretical formula and the effect of the
atmosphere.
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D1

If you toss a ball up into the sky it comes back after a while. But if you would
be able to throw it fast enough it wouldnt; there is a critical limit called the
escape velocity.

To understand escape velocities, we should understand that gravity is a force
that binds objects together, just as the electric force binds atoms together. To
tear apart such a bond requires adding an amount of energy equal to the binding
energy.

The binding energy of a gravitational bond is given by

Eg = G
Mm

r

where G is the gravitational constant and has value 6.67 · 10−11

Now, to break the bond we need to give the object a kinetic energy Ek at
least as large as this graviationa bdingin energy. Since Ek = 1

2
mv2 we get

1

2
mv2esc = G

Mm

r
→

vesc =

√

GM

r
(1)

The important insight here is that the escape velocity does not depend of the

mass of the escaping object.

Let us consider now an object sitting on the surface of the earth, which has
mass M = 6 · 1024kg. r is then the earth’s radius, which is 6400 km. We get

v =

√

6.67 · 10−11 · 6 · 1024

6.4 · 106
= 11, 200 m/s = 11.2 km/s

D2

a) For 1/λ to become a positive quantity, we need n1 < n2. The Lyman series
are all the transitions to n = 1, so we get n1 = 1, n2 = 2, 3, .... The Balmer
series are all the transitions to n = 2 so here n1 = 2, n2 = 3, 4, .... The Paschen
series is in the same manner n1 = 3, n2 = 4, 5, ...

b) The letter H is reserved for the Balmer line, so we know that n1 = 2.
The greek letter then tells us the value of n2. The first possible n2 is called α,
the second β etc.

1

λHα
= R

(

1

22
−

1

32

)

= 1.097 · 107 · 0.139 m−1 =

= 1.52 · 106 m−1
→ λHα =

1

1.52 · 106
= 6.56 · 10−7 m = 656 nm
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In a similar way

1

λHβ
= R

(

1

22
−

1

42

)

→ · · ·λHβ = 486 nm

1

λHγ
= R

(

1

22
−

1

52

)

→ · · ·λHβ = 434 nm

c) As n2 increases, the line wavelengths converge to the value

1

λ
= R

(

1

n2
1

−
1

∞

)

=
R

n2
1

For the Balmer series (n1 = 2) there is apparantly a lower limit to the wave-
lengths at 4/R = 365 nm.

The hydrogen can, however, also make transitions from an unbound state to
n1. Since such unbound states can be anything, they are referred to as the
continuum. A transition from somewhere in the continuum to n1 = 2 will this
produce a photon with wavelength shorter than 365 nm.

D3

D4

Refraction limits how fine details any telescope can observe. It can be shown
that the resolution is given by

θ = 1.22
λ

D

where D is the diameter of the telescope. We see that bigger telescopes and/or
observations at shorter wavelengths favor making sharp images.

a) The Keck telescope on Hawaii is one of the largest in the world. Its res-
olution at 500 nm is

θ = 1.22
500 · 10−9

10 m
= 6.1 ·10−8 radians = 3.5 ·10−6 deg = 12.6 milliarcseconds

What size of object is this on the moon? X = 384, 000 km · 6.1 · 10−8 =
0.023 km = 23 m. The smallest detail the world’s best telescopes could see on
the moon is thus about 20 meters across. It was thus not possible to inpsect
the moon landings by telescope from earth in 1969 (when telescopes were much
worse) and it is not possible to see any stuff they left today.

b) Radio waves have much longer wavelength than optical light, so a radio
telescope has much worse resolution. For observations at 20 cm we get

θ = 1.22
0.2

10
= 1.4◦

7



5

We clearly need to compute the escape velocity from the sun and compare to
150 km/s. Using formula 1

vesc =

√

6.67 · 10−11 · 2 · 1030 kg

7 · 108 m
= 437 km/s

The flare will thus not escape but will fall back into the sun.

6

We have seen (exercise 2) that the wavelength of an Hβ photon is 486 nm. The
energy is relatived to wavelength as

E = hν = h
c

λ

where h is Planck’s constant (6.63 · 10−34) and c is the speed of light. We get

E = 6.63 · 10−34
·

3 · 108

486 · 10−9
= 4.1 · 10−19 J

One electron volt (ev) equals 1.602 · 10−19 J , so the answer is eV is

E =
4.1 · 10−19

1.602 · 10−19
= 2.56 eV

7

The wavelength of peak emission is related to the temperature of the blackbody;
hotter bodies emit shorter wavelengths. The exact relation is called Wien’s

displacement law

λpeak =
2.9 · 10−3

T
(2)

In figure 5 we see that the peak occurs at a wavelength of 0.8 · 10−6m. Then

T =
2.9 · 10−3

0.8 · 10−6
= 3625 K

8

The two edges are moving at 2km/s with respect to the center of the sun. The
circumference if the sun is

C = 2πR⊙ = 2π · 6.96 · 1010 cm = 4.37 · 1011 cm

With a velocity of 2 km/s the period becomes

P =
4.37 · 1011

2 · 105 cm
= 2.19 · 106 s = 25.3 days
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9

All stars are too good approximation blackbodies; this means that their gas is
in local thermal equilibrium and that they are optically thick at all wavelengths.
We can then use Stefan-Boltzmann’s law to find the luminosity of any star:

L = σR2T 2

The luminosity depends only on the star’s radius and surface temperature! For
Betelgeuse

L = 5.67·10−8
·(16.4 AU)2 ·36254 = 5.67·10−8

·6.0·1028 ·1.7·1014 = 5.9·1035 J/s

10

a) 1 AU at 1 parsec subtends an angle if 1 arcsec. Then 10 AU at 1 parsec
subtends 10 arcsec, and 10 AU at 200 parsec subtends 0.05 arcsec. Since this is
the semi-major axis of the orbit, the separation of the stars is 0.1′′. Since this
is only 1/10 of the quoted resolution of 1′′, the binary is not resolved.

b) The resolution is 1′′ because the atmosphere blurs the images. The theo-
retical resolution of a 2.56 m telescope not disturbed by an atmosphere is at
optical wavelengths (λ ≈ 500 AU) is

θ = 1.22
λ

D
= 1.22

500 · 10−9

2.56
= 2.4 · 10−7 rad = 1.37 · 10−5deg = 0.049′′

If the atmosphere is removed, the NOT could thus indeed resolve the binary
system.

3

D1

a) The output from the star spreads out and at a distance D = 7.76 parsecs
covers a spherical surface of area

A = 4πD2 = 4π · (7.76 · 3.09 · 1016 m)2 = 7.23 · 1035 m2

The power per unit area is then

F =
L

A
=

2.1 · 1028 W

7.23 · 1035 m2
= 2.90 · 10−8 Wm−2

b) The apparent magnitude is given by

m = −2.5 log10(F/Fref ) +mref

where Fref and mref are the flux and apparent magnitude of any other object.
Here we use the values of the sun F⊙ = 1366 W/m2 and m⊙ = −26.81. This
gives us

m = −2.5 log10
2.90 · 10−8

1366
− 26.81 = −0.13
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c) The power output derived above is the total power over all wavelengths
that the star is emitting at. Only part of this will be at visible wavelengths.
The bolometric correction specifies how much larger the visual magnitude is
compared to the bolometric magnitude.

Bolometric correction = mv −mb = MV −MB

We then get
mv = BC +mb = 0.15− 0.13 = 0.02

D2

The color of a star can be specified by the relative brightness at two different
wavelengths or wavelength bands. The wavelength bands are almost always
chosen to be the blue (B) and the visual (V) bands. Then

Colorindex(B − V ) = mB −mV

The magnitudes become smaller with increasing brightness, a blue object will
have a small color index and a red object a large color index.

a) Here we get
B − V = 18.3− 15.8 = 2.5

b) Since we know the star’s temperature (5500 K), we know its spectrum and
thus the value of the color index that it should have. The center wavelengths
for B and V are 442 nm and 540 nm. Then Plancks blackbody formula gives us

IB
IV

=

(

λV

λB

)5

·

exp hc
λV k·5500 − 1

exp hc
λBk·5500 − 1

= 0.92

Then

MB −MV = −2.5 log10 FB − (−2.5 log10 FV ) = 2.5 log10
Fv

FB
= 0.09

D3

The distance modulus is defined as

distance modulus = m−M = −2.5 log10
F

Fref
+mref +M

Now, let the reference object be the object itself at 10 parsecs. Then

m−M = −2.5 log10
F

F10

+M −M = −2.5 log10

(

D

10 pc

)−2

We now solve this for D:

m−M = 5 log10

(

D

10 pc

)

→ D = 10
m−M

5
+1 pc
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