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Introduction
In the view of the great philosopher G.M., there are three main domains of computational astro-
physics; gravity, hydrodynamics, and radiative transfer (RT). One may also delineate three main
categories of numeric approaches; Smoothed Particle Hydrodynamics (SPH), Partial Differential
Equations (PDEs), and Monte Carlo (MC) methods. In this course we will focus on radiative
transfer, and treatment of this with both PDE and MC methods. We will study actual tools and
methods used at the current research forefront in various astrophysical discplines, and get hands-on
experience with these.

RT Literature
• Mihalas (1970): "Stellar Atmospheres." Also a second edition (1978) exists.

• Mihalas & Mihalas (1984), "Foundations of Radiation Hydrodynamics" (book).

• Rob Rutten 2003 compendium "Radiative Transfer in Stellar Atmospheres". Limited to
plane-parallel RT.

• Hubeny & Mihalas (2014), "Theory of Stellar Atmospheres" (book).
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This writeup is to a large extent based on the fundamental theory presented in Mihalas & Mihalas
(1984).

1 A survey of open-source RT software

1.1 Astro
• SKIRT. Galaxies, circumnuclear disks, star-forming regions. 3D MC. C++, open-MP and

MPI parallelisation.

• MAGRITTE. Stellar winds from evolved stars. Ray-tracing. C++.

• RADMC-3D. Protoplanetary disks, circumstellar envelopes, dusty molecular clouds, dusty
tori around AGN and models of galaxies. 3D MC. Fortran 90, but user can do everything
with a Python interface.

• HYPERION. Dust continuum RT. 3D MC. Fortran with MPI parallelization and Python
wrapper.

• TARDIS. Supernova photospheric spectra. 1D MC. Python with C extensions.

• petitRADTRANS. Exoplanets. Plane-parallel RTE, LTE, with scattering.

• CMFGEN. Stellar winds and supernovae. 1D RTE.

In description of basic operation of these and other modern codes, one finds expressions like
"Feautrier method, with ALI of Olson et al. 1986, and Ng acceleration" (petitRADTRANS)
and "Λ-iteration with Variable Eddington Factor, acceleration with approximate Newton-Raphson
solver" (CMFGEN). Thus, we will need to investigate such concepts to understand how they work.

1.2 Non-astro
• Open-MC. MC for neutron and photon transport. Romano et al. (2015).

• MCARATS. Earth atmosphere. Iwabuchi (2006).

• LBLRTM - Line by line radiative transfer module. Earth atmosphere. Clough et al. (2005).

• SpectralCalc.

2 The radiation field
The radiation field is, at any given time, a 6-dimensional quantity, varying over 3 spatial dimensions,
2 angle dimensions, and frequency. If the number of points per spatial dimension is Ns, the number
of angular points Na, and number of frequency points Nf , just storing the radiation field takes

N = 1011

(
Ns
100

)3(
Na
10

)2(
Nf

1000

)
, (1)

i.e. 100 billion numbers, much more than what can be stored in a modern computer (∼ 1 billion
numbers).

Do we need to store the radiation field? Discuss in pairs.

Storage requirement is often one factor for needing to simplify. Much RT work is limited
to spherical symmetry, where 2 space variables and 1 angle variable are dropped, reducing the
dimensionality from 6 to 3. Note that going from 3D to 2D still requires two angle variables, so
dimensionality goes from 6 to 5 only. In the simplest problems we can conceive of we drop also the
frequency variable (giving "gray transport"), reducing the dimensionality to 2 (radius and angle).

If the chief objective is to obtain the dynamic effects of the radiation field, much simplification
and reduced dimensionality and resolution is often motivated. On the other hand, if the objective
is to predict the emergent radiation in high detail, larger problems need to be considered.
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2.1 Spatial gridding (Ns)
A code may operate with spatial coordinates defining the grid, or with optical depth defining
the grid. In principle, the radiation field at a given wavelength can change over length scales
corresponding to the mean-free-path (the average length a photon travels before interaction, see
more below) at that wavelength. This translates to, for full resolution, a number of spatial points
Ns = max [τλ], if optical depth is used as independent varible. From this follows

• Reduction of the spatial domain is always a priority in 3D, because the Ns factor has the
highest power in Eq. 1. Note that in 2D, there is already an equal power (2) by another
term (the angles).

• For spatial grids, it is beneficial to have grids with variable cell sizes, becoming larger where
mean-free-paths are longer. One example is to use a spherical coordinate system instead of
Cartesian, if density decreases outwards.

2.2 Angular gridding (Na)
If there is structure in the spatial domain on scale size Rs, the radiation field at a given point
may change on angular scales Rs/R where R is the domain scale. Thus, to simulate a region in
3D that is say clumped by a factor of 10, a factor ∼ 105 (N3

sN
2
a ) finer space-frequency grid is

needed. This helps us to understand why models of clumped stellar winds, for example, have only
quite recently been computed. When relativistic effects are important, higher angular resolution
becomes necessary by a factor ∼ Γ (the beaming factor).

2.3 Frequency gridding (Nf)
The needed frequency resolution is determined by the frequency scale over which the emission and
absorption coefficients vary. If bound-bound transitions are involved, these become the limiting
factor due to their narrowness. The thermal line width of an atom of mass A (units of mp) is given
by:

vth ∼

√
2kT

Amp
= 12 km s−1

(
T

104 K

)1/2

A−1/2. (2)

A line at rest wavelength λ0 = 5000 Å has from this formula a thermal width of λ0×vth/c = 0.2 Å
(for T/A = 104 K), and to resolve it one would need a frequency spacing of� 0.2 Å. To model the
whole optical/NIR spectrum (∼ 3000-25,000 Å), we would then need � 110, 000 frequency points
if a linear grid is used. From this we comment:

• A logarithmic wavelength spacing is beneficial, because the line widths scale with λ. This
also reduces Nf - in the example above the range is covered by ∼53,000 points instead of
∼110,000 if a log-grid is used.

• Modelling of cold and/or heavy gas gas requires many more frequency points than hot/light
gas. How much more expensive is it to resolve r-process line formation in a kilonova ejecta
at 1000 K compared to H-line formation in a planetary nebula at 20,000 K?

2.4 Discussion
• To what extent have you thought about (or tested) the impact of different griddings and

resolution for the radiation field in your current RT application?

3 Radiation field quantities
As particles can be treated as ensembles in statistical mechanics and thermodynamics, photons
can be treated in a macroscopic field framework. For this to work, over any scale in length, angle,
or frequency over which physical conditions change, the number of photons must be large. This
is fulfilled in the vast majority of astrophysical situations encountered, but exceptions exist (e.g.
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single-photon heating of dust grains).

The most commonly used description of the radiation field in the macroscopic picture is the specific
intensity Iν(x, y, z, θ, φ, t). This describes the energy flux per unit area at position x ≡ [x, y, z] ≡
[r,Θ,Φ], at frequency ν, into direction n = f(θ, φ) = ”ω”, per steradian. In general we will take
θ to be the angle relative to the radial direction, and φ to be the orthonormal (azimuthal) angle.
The unit of Iν in cgs is erg cm−2 s−1 Hz−1 ster−1. An important property of Iν is that in the
absence of sources or sinks, it stays constant along a ray.

An equivalent quantity is the photon number density ψν :

ψν =
1

chν
Iν , (3)

which has unit cm−3 Hz−1 ster−1. A third is the photon distribution function fR,ν :

fR,ν =
c2

h4ν3
Iν , (4)

which has units cm−4 g−1 s ster−1 and describes the number density in phase space (space and
momentum). A description of the 6-D phase space distribution is equivalent to the distribution over
space, frequency, and angles. Of these quantities, fR,ν is the relativistically invariant distribution.
This means that to transform Iν between frames, Eq. 4 tells us there is a (ν/ν′)

3 conversion factor,
where ν and ν′ are the frequencies in the two frames.

3.1 Zeroth moments
The mean intensity Jν is the angle-average of Iν :

Jν =
1

4π

∫
Iνdω, (5)

which is also called the zeroth moment of the radiation field. It has the same units as Iν . Here∫
dω denotes integration over all solid angles.
An equivalent quantity is the monochromatic radiation energy density Eν :

Eν ≡ hν
∫
ψνdω, (6)

which has units erg cm−3 Hz−1. Combining the last two equations gives the relation Eν = 4π/cJν .
This is often used in MC codes in which photon number densities ψν are easier to tally up than Iν
(because the latter needs definition of surfaces whereas ψν does not), but Jν is the final quantity
needed.

3.2 First moments
The monochromatic radiation flux Fν is a vector defined by

Fν ≡
∫
Iνn(ω)dω, (7)

which is also called the first moment of the radiation field. It has unit erg s−1 cm−2 Hz−1, and
represents the net flux of energy through a unit surface (so in spherical symmetry the spectral
luminosity at radius r is 4πr2Fν(r)).

Sometimes an alternative first moment Hν , called the Eddington flux, is used:

Hν ≡
1

4π
Fν . (8)

A third equivalent quantity is the monochromatic radiation momentum density gν :

gν ≡ c−2Fν , (9)

which has units erg s cm−4 Hz−1.
In spherical symmetry, Fν (and Hν and gν) are always in the radial direction and their mag-

nitudes Fν , Hν , gν are used for notation, then simply called "the flux".
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3.3 Second moments
The (3 × 3) radiation stress tensor Pij

ν is

Pij
ν ≡

∫
ψν(ω)hν

(
ni · n(ω)

) (
nj · n(ω)

)
dω, (10)

and is also called the second moment of the radiation field. It represents the net rate of transport
of momentum in direction i across a surface with normal in direction j. It has dimension dyne
cm−2 Hz−1, and is symmetric. From the definitions of Pij

ν and Eν directly follows the general
relation ∑

i=1,2,3

Pii
ν = Eν , (11)

between the trace of the second-moment tensor and the zeroth moment.
In spherical symmetry Pij

ν is a diagonal matrix. If we let the three direction axes be (θ̂, φ̂, r̂),
then (MM84 Eq. 66.6):

Pij
ν =

(Eν − Pν)/2 0 0
0 (Eν − Pν)/2 0
0 0 Pν ,

 (12)

where

Pν ≡ P r̂r̂ν =

∫
ψν(ω)hν (r̂ · n(ω)) (r̂ · n(ω)) dω =

2π

c

∫ 1

−1

Iνµ
2dµ, (13)

where we have introduced µ ≡ r̂ · n. For isotropic radiation fields (Iν(µ) = Iν = Jν), we get
Pν = 4π/3cJν = Eν/3 and all entries on the diagonal equal Pν .

Sometimes the alternative quantities Kij
ν and Kν (called "the K-integral") are used:

Kij
ν =

c

4π
Pij
ν (14)

Kν ≡
c

4π
Pν =

1

2

∫ 1

−1

Iνµ
2dµ (last relation for spherical symmetry). (15)

The mean radiation pressure P̄ν is defined as

P̄ν ≡
1

3

∑
i=1,2,3

P iiν = Eν/3. (16)

3.4 Other quantities
Sometimes normalized moments are better suited to characterize the radiation field than the
ordinary moments.

The normalized first moment Fν/(cEν) ≡ Hν/Jν is also called the flux factor and it measures
how much net transport of radiation energy takes place. Its absolute value is bounded by 0 and
1. Values close to zero are indicative of conditions close to isotropy (in which no net energy is
transported in any direction), while values close to 1 arise in a free-streaming regime where most
radiation moves along the same direction and therefore transport all their energy in that direction.

The Eddington factor fν is the ratio of the second moment (in the radial direction) and the
zeroth moment:

fν ≡
Pν
Eν

=
Kν

Jν
. (17)

Its value also lies between 0 and 1. Similarly to the flux factor, the Eddington factor measures the
degree of anisotropy of the radiation field, while going from isotropic diffusion to free-streaming
conditions, fν increases from 1/3 to 1. As a geometric measure, it can usually be obtained to
satisfactory accuracy by solving (fast) approximations to the transfer equation (more later on).
Some methods deploy even higher order integrals of Iν , but most use some combination of those
described here.
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Quantity General Radial component
Radiation field Iν , ψν , fν,R -
Zeroth moment Jν , Eν -
First moment Fν ,Hν , gν Fν , Hν , gν
Second moment Pij

ν ,Kij
ν Pν , Kν

Table 1: Radiation field quantities.

4 Emission and absorption coefficients
To set up a transfer equation, we need terms specifying the creation and destruction of radiation;
these are the emission and absorption coefficients.

The emission coefficient (or emissivity) is often denoted ην(x, y, z, θ, φ) and is in general a 6-D
quantity, with unit erg s−1 cm−3 Hz−1 ster−1. The product ηνds, where ds is a path segment,
gives the amount of specific intensity dIν injected into the beam over the segment length. In the
fluid rest frame (comoving frame), ην is in general still a 6-D quantity as the emissivity arising
from scattering can be angle-dependent. If there is no scattering, or if the scattering is isotropic,
it reduces to an (isotropic) 4-D quantity (3 space + frequency).

The absorption coefficient is often denoted χν(x, y, z, θ, φ)1 and is also a 6-D quantity, with
unit cm−1. The product Iνχνds gives the amount of specific intensity dIν lost from the beam over
the path length. In the fluid rest frame, χν is isotropic so reduces to a 4-D quantity (3 space +
frequency).

The mean-free path λν is

λν ≡
1

χν
, (18)

and has unit cm. It specifies how far a photon travels on average before it has some kind of inter-
action.

The optical depth between two points is the integral of the absorption coefficient between the
points

τν(x,x′) =

∫ x′

x

χν(x + ns)ds. (19)

Absorption can sometimes be divided into the processes of scattering and thermalization. By
scattering we mean that the photon is reemitted with the same energy in the frame of the
scattering agent, but in a new direction. This happens for example in Thomson scattering by
free electrons, and in resonance line scattering by atoms. By thermalization we mean that the
photon energy is transformed to thermal kinetic energy of the gas (and possibly also to potential
energy). This happens for instance when a line absorption is followed by collisional deexcitation,
or in photoionization (here also potential energy is created along with thermal energy).

One should note that, in the general case, one does not know a-priori what will happen fol-
lowing e.g. a line absorption; the atom can do a myriad of things. Thus, this division between
scattering and thermalization does not really exist in the most generalized description - but for
many simplified ones used in practise, not least as a conceptual aid.

An often used nomencalture is that thermal absorption is represented by κν and scattering by σν ,
so

χν = κν + σν . (20)

The emissivity can likewise be divided into thermal and scattering components, often denoted as

ην = ηtν + ηsν . (21)
1The absorption coefficient is sometimes called the opacity (e.g. in Mihalas) but we will here use opacity for

cross section per unit gram.
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The source function is the ratio between emissivity and absorption coefficients

Sν ≡
ην
χν
. (22)

It has the same units as Iν .

4.1 Scattering
In general, a scattering emissivity function may be written (e.g. Eq 1-23 in Mihalas 1978)

ηsν =
1

4π

∫ ∞
0

∫
Iν′(dω

′)R(ν′,n′, ν,n)dν′dω′, (23)

where R is the redistribution function, a 9-D quantity (3 space, 2 incoming angle, 2 outgoing
angle, 1 incoming frequency, 1 outgoing frequency). Its high dimensionality means in virtually all
applications simplifying assumptions about it are necessary.

4.1.1 Complete coherence limit

In this limit one assumes perfectly coherent scattering (ν = ν′). This is usually the treatment for
continuum scattering, and sometimes also line scattering (Mihalas 1978). We can then write

R = g(n′,n)σνψ(ν′)δ(ν − ν′), (24)

where ψ is the (normalized) line profile function. If we also assume isotropy, then g = 1, and

ηsν = σν
1

4π

∫
Iνdω

′ = σνJν . (25)

For dipole scattering, g = 3/4(1 + cos (n · n′)2
).

4.1.2 Complete incoherence (=complete redistribution) limit

In this limit one instead assumes that there is no correlation between ν′ and ν. Then...TBD...

4.1.3 Partial redistribution

TBD..

5 Transfer equation methods vs Monte Carlo methods
There are two general categories of methods for solving RT problems. The first one is the "classic"
one, where the bookkeeping equation for the radiation field is solved by discretizing the ODEs,
PDEs, or integro-differential equations (depending on problem) using finite differences for deriva-
tives, and/or numeric integration techniques. Sometimes part of the problem can be solved with
analytic steps as well. We will call these methods "RTE methods". One may outline two branches
of RTE methods; grid discretization and ray-tracing. In ray-tracing we always solve a differential
equation for the specific intensity along some beam, which can be done if emission and absorption
coefficients are known along the path. This is also called a formal solution. When either emission
or absorption depends on the radiation field (to be computed) itself, we have coupling between
beams and we have to co-solve for them.

The second category is Monte Carlo simulations. While the continuum-description of the radiation
field lends itself to differential-equation solving that works well for the majority of applications, its
fundamental constituency of discrete particles (photons) also opens up possibilities to simulate the
RT directly, photon by photon (or photon packet by photon packet). Because the quantum physics
governing matter-radiation interactions is random by nature, the random sampling capabilities of
modern computers can mimic the true physics in an intuitive and correct way.
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There are various pros and cons of these two approaches, and which works best varies with appli-
cation. While historically RTE methods were almost exclusively, MC methods have seen a strong
growth over the past 10-20 years. Their main weakness - the need to simulate a large number
of photon trajectories and interactions to get an accurate solution - made them hardly feasible
until the extraordinaty power of modern parallel computing systems became widely available in
the early 2000s.

Here are some pros and cons of MC methods:

• + Intuitive and quite easy to code up.

• +Well suited to large-scale parallel HPC, which took off in the early 2000s as the fundamental
clock speed of individual processors was reached.

• + No significant increase in code complexity when the domain dimensionality increases
(1D,2D,3D) or microphysics (e.g. anisotropic instead of isotropic scattering) gets more com-
plex.

• + Allow focussing the computing power on "where the energy is".

• + Allow informative looks "inside the machinery", can tag packets with information about
their origin, trajectories and interactions.

• - When RTE methods are an alternative, they are usually faster - sometimes significantly so.

• - The MC noise associated with the random sampling introduces issues with testing and
reproducability. It can also lead to issues with convergence criteria. It is expensive to reduce
the levels of MC noise (∝ 1/

√
Npackets).

6 The transfer equation
The transfer equation corresponds to the Boltzmann equation for photons. The non-relativistic
transfer equation in the observer frame, along a path s is (e.g. Eq. 76.3 in Mihalas & Mihalas
1984) [

1

c

∂

∂t
+

∂

∂s

]
Iν(x,n, t) = ην(x,n, t)− χν(x,n, t)Iν(x,n, t). (26)

Depending on the problem and algorithm, ην and χν may be explicitly known, or they may be
functions of Iν (in which case the problem is much more difficult). In the first case we have to
solve a PDE in two variables (t and s), in the second case an integro-partial-differential equation.

The ∂/∂s differential corresponds in generic notation to n · ∇. In Cartesian coordinates:

∂I

∂s
= (n · ∇) I =

∂I

∂x

∂x

∂s
+
∂I

∂y

∂y

∂s
+
∂I

∂z

∂z

∂s
= nx

∂I

∂x
+ ny

∂I

∂y
+ nz

∂I

∂z
. (27)

In curvilinear coordinates, moving on a straight line path ds corresponds to continuous rotation of
the basis vectors (e.g., in spherical symmetry the angle to the normal θ changes along a ray (unless
θ = 0.)) In spherical symmetry,

∂

∂s
=
∂r

∂s

∂

∂r
+
∂θ

∂s

∂

∂θ
, (28)

where we have used dr = cos θds and rdθ = − sin θds. Eq. 26 then becomes[
1

c

∂

∂t
+ µ

∂

∂r
+

1− µ2

r

∂

∂µ

]
Iν(x,n, t) = ην(x,n, t)− χν(x,n, t)Iν(x,n, t). (29)

6.1 Zeroth moment of the transfer equation
Integrating the transfer equation over angle, we get (Eq. 78-2 in MM84)

1

c

∂Jν
∂t

+
1

4π
∇ · Fν =

1

4π

∫
(ην − χνIν) dω. (30)
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Here the n in the second term has moved inside the integral, giving a first-moment of the radiation
field term (Fν). In the static case, χν is isotropic (while ην may not be), which means that the
RHS will contain only

∫
Iνdω = Jν , not Iν . Therefore, only moments of Iν remain:

1

c

∂Jν
∂t

+
1

4π
∇ · Fν =

1

4π

∫
ηνdω − χνJν (static). (31)

In spherical symmetry, this becomes (compare Eq. 78.5 in MM84):

1

c

∂Jν
∂t

+
1

4πr2

∂
(
r2Fν

)
∂r

=
1

2

∫ 1

−1

ηνdµ− χνJν (static). (32)

By substituting the expression relating Jν to Eν , one can show that the first moment equation
(Eq. 30) expresses energy conservation : the rate-of-change for the radiative energy density is the
net creation minus the net outflow (see Eq. 78.3 in Mihalas & Mihalas 1984).

Note that even for anisotropic scattering, the RHS does still not depend on Iν because we integrate
over outgoing angle.

Radiative equilibrium refers to the state that the gas emits as much as it absorbs:∫
ν

∫
ω

(ην − χνIν) dωdν = 0. (33)

This must hold in any static situation. Since such a situation also has ∂Jν/∂t = 0, it follows from
Eq. 30 that ∇ ·H = 0, which gives L = constant. Thus, in a stellar atmosphere, for example,
the luminosity is the same at each depth. In the interior of the star radiative equilibrium does not
hold because of energy generation by fusion, and a gradient in L is established.

6.2 First moment of the transfer equation
Multiply now the transfer equation (Eq. 26) by n and integrate over angle. This gives[

1

c

∂

∂t
+ n · ∇

] ∫
Iνn(ω)dω =

1

4π

∫
(ην − χνIν) n(ω)dω. (34)

This can be written

1

4πc

∂Fν
∂t

+∇ ·
∫
Iνn

2dω =
1

4π

∫
(ην − χνIν) n(ω)dω, (35)

or equivalently (Mihalas & Mihalas (1984, Eq 78.9))

1

c

∂Fν
∂t

+ c∇ ·Pij
ν =

∫
(ην − χνIν) n(ω)dω. (36)

For an isotropic ην , the first term on the RHS will become zero and we can write (e.g. Eq. 4.8 in
Rutten)

1

c

∂Fν
∂t

+ c∇ ·Pij
ν = −χνFν . (37)

This equation expresses momentum conservation of the radiation field. The time rate of change
of momentum is the transport of momentum across the boundary surface (second term on LHS),
plus addition of momentum by emission (first term on RHS), minus removal of momentum by
absorption (second term on RHS). Then, the radiative force due to absorption must equal this last
term

fR =
1

c

∫ ∫
χνIνn(ω)dωdν. (38)

In spherical symmetry, the first moment equation (with isotropic scattering) becomes

1

c2
∂Fν
∂t

+
∂Pν
∂r

+
3Pν − Eν

r
= −χνFν (39)
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6.3 Closure
These moment equations do not contain Iν , but only angle-integrated quantities of Iν ; Jν , Fν
and Pν

ij . Thus, the dimensionality of the problem is reduced by 2 in multi-D problems (both 2D
and 3D require two angles), and 1 in spherical symmetry. This is the main motivation for seeking
solutions to them instead of to the full transfer equation.

However, we always have at least one unknown moment (possibly non-scalar) more than the num-
ber of equations. This is called the closure problem. We cannot arbitrarily simplify our problem
by just integrating the equations. All the angular details of Iν need still to be known to define an
exact closure relation.

A closure relation can be obtained by various means. One is variable Eddington factor meth-
ods (often used in non-hydro RT), where an iteration with a formal solver of the regular transfer
equation for Iν (with source function fixed) is carried out. Note there is some subtility here : if
we anyway have to solve the transfer equation many times, why don’t we just take J etc from its
solution directly? The answer is that convergence is faster if we determine J from the moment
equations, where we can couple it in implicitly in scattering cases (more later).

Another approach is to use analytic formulae, basically fixed approximations for the closure
estimated from the geometry (often used in radiation hydro). Examples are "FLD" (flux-limited
diffusion) and "M1". This will be covered at depth in the lectures by Evan O’Connor.

Note that in multi-D, we have 4 equations but 10 (Jν ,Fν ,Pij
ν ) unknowns (Pij

ν is symmetric). Thus
we need not one closure relation but 6 in each cell. In spherical symmetry we have 2 equations (no
32, 39) and 3 unknowns (Jν , Fν , Pν), so a single closure relation is sufficient.

7 Time-dependence
A central question for many problems is whether the time-derivative term in the transfer equation
is needed or not. A good discussion of this is given in Mihalas & Mihalas (Section 6.5 in 1984).

Define a optically thin radiation flow timescale tR:

tR =
l

c
, (40)

where l is a length scale of the problem. If the distance l is optically thick (l/λ = τ � 1), it takes
instead a diffusion time scale td

td =
l2

cλ
= τtR (41)

for a photon to travel the distance (τ2 = l2/λ2 scatterings, each taking a time λ/c).
Define also a fluid flow timescale

tf =
l

v
, (42)

where v is a fluid velocity scale.

Regimes for the transfer:

1. (Effectively) optically thin regime. If the gas is optically thin, tR/tf = v/c.

Mihalas & Mihalas (1984): "If v/c� 1, the radiation field at any position adjusts essentially
instantaneously to changes in physical conditions”.

For example, if the radiation field changes because the density is getting lower in an optically
thin outflow with v/c� 1, the time-derivative can be dropped.

If we care about the effect of radiation on the fluid flow, we need to resolve the fluid flow
timescale tf . If v/c � 1, tR/tf � 1, and a change in fluid conditions changes the radiation
field on a time-scale much shorter than the fluid flow time scale.

Note that this line of reasoning assumes that changes in emission and absorption are related
to changes in flow, i.e. occur on time scale tf .

11



Mihalas & Mihalas (1984) denotes this regime quasi-static.
Note that if the region is optically thick, but τ is small enough and/or v small enough that
td/tf = τv/c < 1 (i.e. 1 � τ � c/v). Then we come to the same regime as the optically
thin case.

2. Optically thick, frozen diffusion regime. Now assume the region is optically thick and
td/tf � 1. Then the formal diffusion time is long compared to the flow time, and it would
appear we need to solve for the radiation transport time-dependently.
However, if the optical depth is high, for many situations the radiation will interact with the
matter in a thermalizing manner regularly and that ’resets’ conditions. Then, the ’effective’
time that photons travel without being destroyed is not td but something smaller.

3. Optically thick, dynamic diffusion regime. Assume now τ is large enough that td/tf =
τv/c > 1, but not so large as to td/tf � 1, i.e. td ∼ tf .
Mihalas & Mihalas (1984) states that here we must include the time-derivative term, and
solve on the fluid time scale.

4. External power source. If some time-varying external power source, such as a neutrino
source or radioactivity, governs the radiation field, the radiation field can change on the
time-scale ts of that source, which may be shorter than the flow time scale tf . Thus, if we
take tR = R/c = v/ct, we need tR � ts for a time-independent solution, or

t� c

v
ts. (43)

For the optically thick, dynamic diffusion situation (No 3 above), we have to solve time-
dependently on the shorter time-scale of ts and tf .

Discussion : discuss the treatment if time your current RT application.

8 Transfer equation in a moving medium

8.1 Reference Frames
There are three reference frames which are of fundamental importance in radiative transfer theory.

1. Atom frame ("AF"). The frame in which the individual atom (or electron) undergoing an
interaction has zero velocity.

2. Lab frame ("LF","observer-frame"). The frame in which observer, or sometimes star
(or equivalent system) as a whole, is at rest.

3. Comoving frame ("CMF", "Lagrangian frame"). Frame at (x,t) in which the integral
of velocity vectors in a small volume around x is zero. Since the matter seen as "bulk" is at
rest in this frame, the opacity, and often also the emissivity, are isotropic. This is the key
property that makes the CMF attractive to solve RT equations in.

Note that the CMF is in general not an inertial frame, as the matter bundle, and therefore the
frame, can accelerate. The CMF of a given bundle should be understood as a time-sequence of in-
ertial frames, each moving with the instantaneous velocity of the fluid element under consideration.

Combining energy and momentum gives a four-vector and Lorentz transforming it yields two
important special relativistic effects in radiative transfer, namely the Doppler shift:

ν0 = γν (1− n · v/c) , (44)
ν = γν0 (1 + n0 · v/c) , (45)

and the aberration

n0 = (ν/ν0) (n− γv/c)

[
1− γn · v/c

γ + 1

]
, (46)

n = (ν0/ν) (n0 + γv/c)

[
1 +

γn0 · v/c
γ + 1

]
. (47)
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Here, we have adopted the nomenclature of Mihalas & Mihalas (1984) and denote quantities
evaluated in the CMF with a subscripted ’0’. In 1D, the aberration formulae simplify to

µ0 =
µ− v/c
1− v/cµ

, (48)

µ =
µ0 + v/c

1 + v/cµ0
. (49)

Using a series of simple “Gedankenexperiments”, Thomas (1930) derived the transformation laws
for the specific intensity

I(ν, µ) =

(
ν

ν0

)3

I0(ν0, µ0), (50)

η(ν, µ) =

(
ν

ν0

)2

η0(ν), (51)

χ(ν, µ) =

(
ν

ν0

)−1

χ0 (ν0) . (52)

8.1.1 Moments

TBD...

8.2 Comoving frame formulations
When the fluid is accelerating (as e.g. during a SN explosion) or there is velocity gradient (as
in the coasting phase of a supernova), it is difficult to solve the transfer equation in the observer
frame, because the motions cause ην and χν to become anisotropic. One approach is to simplify
the RT equation with first-order expansions for ην and χν . This method is described in section
93 in Mihalas & Mihalas (1984). The limitation of this method is when lines are important;
the first-order expansions are then insufficient. One then normally works in the comoving frame,
described in section 95 in Mihalas & Mihalas (1984). The main advantage of the comoving frame
is the isotropy of χν (and sometimes ην) and easier matter-radiation interaction calculations. The
drawback is a more complex transfer equation. The equation here not only has coupling in space
and time, but also in frequency and angle.

The fully relativistic comoving transfer equation is, even in spherical symmetry, a very long
expression (Eq. 95.9 in Mihalas & Mihalas 1984). The moment equations are also lengthy (Eqs.
95.11 and 95.12). If we retain only terms to order v/c, and also ignore the fluid acceleration term
a, we get in spherical symmetry (Eq. 95.17 MM84):

1

c

DI0
Dt

+
µ

r2

∂

∂r

[
r2I0

]
+

∂

∂µ0

(
(1− µ2

0)

[
1

r
+
µ0

c

(
v

r
− ∂v

∂r

)]
I0

)
− ∂

∂ν0

(
ν0

[
(1− µ2

0)
v

cr
+
µ2

0

c

∂v

∂r

]
I0

)
+

[
(3− µ2

0)
v

cr
+

(1 + µ2
0)

c

∂v

∂r

]
I0

= η0 − χ0I0

where D/Dt = ∂/∂t + v∂/∂r. The many terms have their origin from several effects, all related
to the fact that the comoving frame is not an inertial frame; a Lagrangian path segment implies
changes in the comoving angle and frequency. Compare e.g. to the equation solved by the CMFGEN
supernova code (Hillier & Dessart 2012), which uses v/c� 1 and assumes homology (dv/dr = v/r):

1

c

∂I0
∂t

+
µ0c+ v

c

∂I0
∂r

+
(1− µ2

0)

r

∂I0
∂µ0
− vν0

rc

∂I0
∂ν0

+
3v

rc
I0 = η0 − χ0I0. (53)
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9 RTE solutions with scattering
If emission and absorption coefficients are numerically known, numeric solution to the transfer equa-
tion in any of its formats is straightforward - not necessarily easy but in principle not problematic.
Such solutions are called formal solutions. Some very simple problems fall in this category, and the
challenge lies mainly in designing as fast as possible algorithms. Formal solutions are discussed in
the next chapter.

Normally, however, η and χ depend on the radiation field in some way. One solution approach
is then iteration; alternate formal solutions with recomputation of η and χ. This is called Λ-
iteration, and in some problems such brute-force split-up of the equation system and solution with
iteration works well, in particularly when optical depths are low or moderate. Indeed, with modern
computing power this approach should probably be the first one considered. This approach may
not be particularly fast. But many alternative ’clever’ approaches invented in the RT literature
since 1960s were sought mainly because computers were too slow to do this iteration in a reasonable
time. This may not at all be the case today, and little is computationally gained from studying
and implementing certain alternative techniques (although they may still provide physical insight).

However, when optical depths are high, Λ-iteration can converge so slowly, that for practical
purposes it can become a non-convergent method. One of the main problems is how to assess the
convergence (see Fig. 1). When this is so, this equation system splitting has to be avoided or
reduced.

Figure 1: Illustration of convergence problems in Λ-iteration, from Auer (1991). The true solution
of S is the dotted line. The solid lines show successive iterations. At i = 20, changes are so slow
that an apparent false convergence is obtained. The true solution is eventually obtained : but
only after about 1000 iterations (iterations 21-999 not plotted).

Another approach is to solve explicit scattering problems by brute force : the equation system
is of size NsNaNf , and we may attempt matrix inversion, which costs N3

sN
3
aN

3
f . But if we have

say 100 points in each of these three dimensions, we need to store a matrix of size 106×106, which
is not possible. Even if it was, inversion would cost ∼ 1018 flops.

Instead, better solution approaches are one of three kinds; the Feautrier method, theRybicki
method, and the Variable Eddington Factor method. Some confusion easily arises, because
variants of the Feautrier method are sometimes also applied as part of Variable Eddington Factor
methods (as formal solvers). Different articles and books can appear contradictory or inconsistent
because authors can differ in their exact definition of the term ’Feautrier method’.

14



9.1 The Feautrier method
For illustration of this method, we first consider a problem in planar geometry:

µ
dIν
dτν

= Iν(µ)− Sν(µ). (54)

For rays going inward (-) and outward (+):

µ
dI+
ν

dτν
= I+

ν (µ)− S+
ν (µ), (55)

−µdI
−
ν

dτν
= I−ν (µ)− S−ν (µ). (56)

Adding these gives:

µ

[
dI+
ν

dτν
− dI−ν
dτν

]
=
[
I+
ν (µ) + I−ν (µ)

]
−
[
S+
ν (µ) + S−ν (µ)

]
. (57)

Subtracting them gives:

µ

[
dI+
ν

dτν
+
dI−ν
dτν

]
=
[
I+
ν (µ)− I−ν (µ)

]
−
[
S+
ν (µ)− S−ν (µ)

]
. (58)

The last equation can also be written

[
I+
ν (µ)− I−ν (µ)

]
= µ

[
dI+
ν

dτν
+
dI−ν
dτν

]
+
[
S+
ν (µ)− S−ν (µ)

]
, (59)

which when put back into Eq. 57, combined with an assumption that S is isotropic (so S+(µ) +
S−(µ) = Sν and S+(µ)− S−(µ) = 0) gives

µ2 ∂Īν(z, µ)

∂τ2
ν

= Īν(z, µ)− Sν(z), (60)

where
Īν(µ) ≡ 1

2
[Iν(µ) + Iν(−µ)] . (0 ≤ µ ≤ 1). (61)

Writing out the source function (isotropy not enforced):

µ2 ∂Īν(z, µ)

∂τ2
ν

= Īν(z, µ)− Stν(z) +

∫∞
0

∫ 1

0
σ(z, µ′ − µ, ν′ − ν)Īν′(z, µ

′)dµ′dν′

χν(z, µ)
(0 ≤ µ ≤ 1). (62)

Note that the demand of scattering isotropy already removed lab-frame differential velocity field
problems, although some tricks salvage some such situations (Rutten, page 118).

At first glance it looks like each equation constains Īν′(µ′) for all angles and frequencies, which
we cannot know unless solving for all angles and frequencies at once, e.g. a full coupling, and full
inversion is needed. But Feautrier (1964) came up with a method that is significantly cheaper.
The essence lies in that the matrix system is for the right ordering block tridiagonal : for each
angle and frequency combination, there is only coupling in space between three depth points (any
second order spatial derivative has this property). Then, one can come up with a backsubstitu-
tion algorithm that is cheaper than brute force matrix inversion. Thus, Feautrier’s method is in
essence a pure ’math trick’. But the method (or very similar methods) are used also in alternative
approaches such as VEF : it is therefore quite broad in its application and important to understand.

The solution details are given in Appendix A. The essence is that each matrix inversion is now
limited to matrixes of size NaNf . The method requires four such inversions at each depth point,
so in total a computational inversion cost of 4NsN

3
aN

3
f instead of N3

sN
3
aN

3
f in the fully coupled

brute force method, a gain by factor N2
s /4, or 2500 for Ns = 100. With samplings of order 100

points in each dimension, CPU time (1 GHz) is about 24 hours, but drops to seconds in the gray
or coherent scattering case.
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According to Castor (2004), the Feautrier method has been used "in the vast majority of slab
geometry work since 1964". One if its advantages is that it works with the second order form of
the transfer equation, which is second order accurate and numerically more benign than the first
order form (Castor 2004).A natural application area is when we want to avoid Lambda iteration
(high optical depth) and explicitly include scattering directly in the solution. Rutten (page 122)
describes that also when S is numerically known, the Feautrier method is a very efficient Lambda
operator, faster than integral solutions (e.g. using exponential functions). Thus, the method finds
use also in Lambda iterations.

The method scales with N3
aN

3
f ; thus when very high resolution is needed in these dimensions,

the method may become expensive. The Rybicki method (next section) is an alternative similar
method which is preferred in certain problems where Nf in particular is large.

9.1.1 Spherical symmetry

A similar second-order equation can be derived in spherical symmetry (see more below), so the
method generalizes to spherical symmetry. This statement holds strictly for isotropic scattering,
Mihalas 1986 tells us ’Observer-frame partial redistribution (non-isotropic) calculations in spherical
symmetry have never been carried out using Feautrier variables.’ (but one goes to comoving frame).

9.1.2 Multi-D

A generalization of the Feautrier method to 2D (and sketching for 3D) is presented in Cannon
1970. One of the spatial dimensions can be ’recursed’ away, but matrices of size Nd1NaNf now
need to be inverted, becoming Nd1Nd2NaNf in 3D. A statement from Mihalas 1986 is that ’the
approach is quite costly in 2 dimensions’.

9.1.3 Comoving frame

The Feautrier method (or similar derivatives) can be applied for comoving frame formulations, see
e.g. Noerdlinger & Rybicki (1974) (plane parallell case), Mihalas et al. (1976) (spherical symmetry).
Noerdlinger & Rybicki (1974) uses the two first order moment equations, rather than combining
them into a second-order one.

9.2 The Rybicki method
The Rybicki method switches the inner and outer ordering of the Feautrier method, defining vectors
for each angle-frequency point instead of for each depth point. This replaces the NdN3

aN
3
f cost of

Feautrier with N2
dNaNf+N3

d (see MM84 page 377 for details), and is thus preferential for problems
with many angle-frequency points. However, it is reported in the literature that there are some
subtle caveats with this method for certain problems when coupling to other physical constraints
(MM84 page 380, M86).

9.2.1 Spherical symmetry

TBD..

9.2.2 Multi-D

A generalization to 2D is presented in Mihalas et al. (1978).

9.2.3 Comoving frame

TBD..

9.3 The Variable Eddington Factor method
Assume we have isotropic scattering. In the Feautrier method, this means only that the off-diagonal
elements (with the same frequency) in the B matrix become identical (see appendix A). This does
not translate to any computational speedup, and cost remains at 4NsN

3
aN

3
f . A different approach,

where the moment equations are iterated with formal solutions to determine closure, then typically
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becomes faster : this is the class of Variable Eddington Factor (VEF) methods.

Integration over angle of Eq. 62 gives (1/2
∫ 1

0
Īνµ

2dµ = 1/2
∫ 1

−1
Iνµ

2dµ = Kν):

∂2Kν

∂τ2
ν

= Jν − Stν −
∫
R(ν, ν′)Jν′dν

′

χν
. (63)

We have defined earlier the Eddington factor fν ≡ Kν/Jν , so we can write this also as

∂2fνJν
∂τ2
ν

= Jν − Stν −
∫
R(ν, ν′)Jν′dν

′

χν
. (64)

This equation has the same form as Eq. 62, except that the variable is now Jν instead of (the
angle-dependent) Īν . There may still be off-diagonal entries in B due to frequency redistribution.
Thus, Eq. 64 can be solved with a similar back-substitution scheme as the Feautrier method. We
have got rid of the angles, bringing each iteration down from 4NdN

3
aN

3
f to 4NdN

3
f . However,

iteration is now needed. The total gain factor is then N3
a/Niter, assuming neglegible computation

time for the formal solutions. In many applications a few iterations is sufficient. This benign
property comes from the fact that the Eddington factor measures the degree of asymmetry of the
radiation field; an integral quantity that is robustly recovered in a few iterations.

9.3.1 Spherical symmetry

An equation can be derived by combination of the zeroth and first moment equations (Eq. 83.74
in MM84):

1

qν

∂

∂τν

[
r2

qν

∂(fνqνJν)

∂τν

]
=
r2

qν
(Jν − Sν) , (65)

where qν is called the sphericality factor, and is fully specified by fν :

ln qν =

∫ r

rc

[(3fν − 1)/r′f)ν] dr′. (66)

Eq. 65 has again a second order spatial derivative and can be discretized and solved by e.g. the
Feautrier scheme.

9.3.2 Multi-D

TBD..

9.3.3 Comoving frame

In the comoving frame in spherical symmetry, two Eddington factors are needed instead of one
(e.g. Mihalas 1986-II).

10 Formal solutions
Formal solutions, for numerically known emission and absorption coefficients (or, equivalently, the
source function), need to be carried out either in simple problems where these are known (and
fixed) from the outset, or in iterative methods such as Λ-iteration or Variable Eddington Factor
methods. This is generally quite straightforward and costs of order NdNaNf in 1D as matrix
inversion is generally not needed.

Hubeny & Mihalas (2014) outline three main classes of formal solvers:

1. Feautrier method.

2. Short/long characteristics. First order transfer integrals on set of discrete ray segments.

3. Discontinuous finite element method. Unlike short characteristics, here the source
function is allowed to have discontinuities (still polynomial). Does not require exponentials.
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10.1 Feautrier method as formal solver
With a known source function, the Feautrier method does only scalar operations, and scales as
NdNaNf , i.e. as fast as possible (Hubeny & Mihalas 2014). Some improvements regarding accuracy
and convergence (e.g. getting a 4th order accurate ’Hermite’ method) are discussed in Sec 12.4 of
Hubeny & Mihalas (2014).

10.2 Short characteristics
This method was first introduced by Olson & Kunasz (1987). The idea is to make analytic solutions
between discrete grid points - cell by cell.2

In 1D the standard analytic solutions are of the form

I(τd, µ) = I(τd−1, µ)e−(τd−τd−1)µ +

∫ τ(d)

τ(d−1)

S(t)e−(τd−t)/(−µ)dt/µ µ < 0 (67)

I(τd, µ) = I(τd+1, µ)e−(τd+1−τd)/µ +

∫ τ(d+1)

τ(d)

S(t)e−(t−τd)/µdt/µ µ > 0 (68)

Normally one then lets S(τ) be represented by some polynomial between the grid points, to allow
analytic solutions of the integrals.

• Linear. Is sometimes not accurate enough.

• Quadratic. The three coefficients are chosen by fitting to three neighboring points.

• Advanced interpolations like “Bezier interpolants” or “monotonized splines”. Jaime is an
expert.

E.g. with a linear interpolation, one gets

I(τd, µ) = I(τd−1, µ)e−∆τd−1/2 + λ−d,dSd + λ−d,d−1Sd−1 µ < 0 (69)

where

λ−d,d = 1− 1

∆τd−1/2
+
e−∆τd−1/2

∆τ
. (70)

Note that, the analytic solution of the integral means accuracy is retained also if the optical depth
between grid points becomes large - as long as the analytic representation is accurate enough.
Here, an advantage of working in optical depth units instead of say spatial units clarifies : the
source function is a more slowly varying function than the emission and absorption coefficients
(e.g. Rutten 2003, page 14), and thus more accurately represented by a polynomial fit.

Hubeny & Mihalas (2014) do some comparisons between Feautrier method, short characteristics
etc, and all methods are basically within a factor 2 of each other for standard test problems. Any
formal solver should need of order NdNaNf operations.

10.2.1 Spherical symmetry

Two main approaches (page 380 in MM84).

Tangent ray. Cost is ∼ N2
sNf in 1D (M86). A drawback of the tangent ray method is that it

cannot be made fully consistent with the moment equations (M86); this is possible instead in the
discrete space method (although normally more expensive).

Discrete space. Cost is ∼ NsN3
aNf in 1D (M86), making it preferable when a small number of

angle points is needed.

An example : CMFGEN Section 3.3 in Hillier 2012.
2Hubeny & Mihalas (2014) remark that the name ’short characteristics’ is not ideally chosen, as ’characteristics’

normally refers to rays in PDE problems, but in plane parallell static atmospheres there is just an ODE to solve.
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10.2.2 Multi-D

TBD..

10.3 Discontinuous finite element method
TBD..

11 Acceleration of Lambda iteration
Rutten section 5.3 and notes to J. Leenarts Master course lab are good.

11.1 Classic Lambda iteration
Classic Lambda iteration refers to a scheme where we alternate solutions to the radiation field with
source function fixed (formal solutions) and to the source function (i.e. the gas state). For a given
source function, any method to calculate Jν can be written in operator form (assuming for now Sν
to be isotropic)

Jν = Λν [Sν ]. (71)

We may also talk about a Lambda operation as calculating I and not J ; we then add a µ as second
subscript

Iνµ = Λνµ[Sνµ]. (72)

For example, if our method is to do a formal integral solution, Λν [Sν ] performs integrals in various
directions, sampling Sν from each cell. But it may also be a computer program that implements the
(differential) Feautrier scheme (fixed source function variant). Some formal solution methods may
correspond to a matrix multiplication with the source function vector, but some involve multi-step
procedures that cannot be written in such a way.

The work flow is then to initially guess Jn=0
ν (for all frequencies and depths), then loop over the

steps

1. Compute Snν = f(Jnν ) (all frequencies).

2. Compute Jn+1
ν = Λν [Snν ].

The idea is that this is faster and more manageable than solving the full coupled system, which
for a test problem of S = εB + (1− ε)J can be written

S = [I− (1− ε)Λ]−1[εB]. (73)

For example, a problem with 104 depth points is too large for direct solution by such inversion,
and for complex problems with angle and/or frequency coupling it is not possible even for small
number of depth points (there are limitations from both CPU time and RAM memory).

11.1.1 Convergence issues

Classic Lambda iteration is a perfectly good, and often the best, technique for low and moderate
optical depths (e.g. Rutten). For high optical depth, however, convergence of classic Lambda
iteration is poor. This is because in a pure iteration, information propagates one optical depth at
a time. For an optical depth of τ , photons carry out of order τ2 scatterings, so as τ gets high the
number of iterations needed becomes very large.

This is, however, not the worst part of the story. The more malicious property of the iteration
scheme is that correction steps start decreasing with each iteration long before convergence is
achieved, giving rise to ’false convergence impression’. As the true solution is (obviously) not
known, we cannot easily probe how ’good’ the current very slowly changing solution is.

Consider the example of LTE gas with coherent scattering. In the iteration scheme this becomes
(assume T is known for now)

Sn+1
ν = εBν(T ) + (1− ε)Λν [Snν ] (74)
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Information must propagate to the thermalization depth, which is τt ∼ 1/
√
ε, which requires at

least 1/ε iterations.

Significance of ε. Does convergence improve of ε is large? It does if there is no strong coupling
between radiation field and gas state. But if there is such coupling, it is less clear how important ε is.

A general iterative scheme can be written as

xn+1 = Fxn + b′. (75)

The F matrix is called the amplification matrix, and its properties determines convergence
properties. One may show

en+1 = Fen, (76)

where e is the error vector. Requiring that ||en+1||/||en|| < 1 requires ||F || < 1. Hubeny & Mihalas
states ’there are several possible choices for norm, we choose the spectral radius which equals the
largest eigenvalue σ”. Thus, one gets divergence for σ > 1, fast convergence for σ � 1, and slow
convergence for σ ∼ 1.

In classic Lambda iteration F = (1− ε)Λ. In the optically thick limit Λ ≈ 1 on the diagonal, and
if ε� 1, σ ∼ 1, predicting bad convergence.

11.2 Accelerated Lambda iteration

We can view full coupling and direct inversion (Eq. 73) as one extreme solution approach,
and classic Lambda iteration as the other extreme, in which the equation system blocks for
gas state and RT are completely decoupled in each iteration.

“Accelerated Lambda iteration” refers to schemes that are positioned somewhere in between
these extremes; there is some coupling of the source function to the current (to be
calculated) radiation field. This coupling is selected in such a way that each iteration is
much faster than in the full coupling regime, and each iteration brings a bigger step towards
the solution than in classic Lambda iteration (because of the partial coupling).

This class of methods are sometimes also called approximate lambda iteration or operator pertur-
bation methods. The first paper introducing them for astrophysics was Cannon (1973), although
the philosophy did not take off until the papers by (Scharmer 1981, 1983) and Olson et al. (1986,
"OAB"). Note that these techniques were known from other areas of science long before Cannon
brought them into the RT field.

The basic idea is to split the Lambda operator into two parts:

Λ = Λ∗ + (Λ− Λ∗). (77)

Here Λ∗ is called the approximate Lambda operator. Then, the Λ∗ part is ("implicitly") linked to
act on the next S estimate, so change the iteration strategy to

Sn+1
ν = εBν(T ) + (1− ε)Λ∗[Sn+1

ν ] + (1− ε) (Λ− Λ∗) [Snν ]. (78)

We have now made a “semi-implicit” setup where part of the operator acts on the current solution,
and the other part acts on the previous solution. It is clear that if we achieve convergence, this is
identical to Eq 74, so the solution will be the correct one.

We can rewrite, or ’solve’, Eq. 78 for Sn+1
ν : (we should combine the equations for each depth,

for each of which the Lambda operators define a particular row in a matrix), now also letting Λ
specifically be a matrix

Sn+1
ν = [I− (1− ε)Λ∗]−1 [εB + (1− ε)Λ[Sν ]n − (1− ε) Λ∗[Snν ]] (79)

= [I− (1− ε)Λ∗]−1[SFS,nν − (1− ε)Λ∗[Snν ]]. (80)
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Solution requires inversion of a matrix that is the unity matrix minus a (scaled) Λ∗ matrix. If we
e.g. choose Λ∗ to be diagonal, this will be much faster than inverting the quantity in Eq. 73. Note
that we also have to perform ’perturbed formal solutions’ Λ∗[Sn] in each iteration.

If Λ∗ carries enough of the full physics of Λ, we will now get bigger steps towards the true solution
in each iteration compared to formal solutions because of the implicit coupling. To make any gain
compared to the fully implicit approach, Eq. 78 must also be solvable with less CPU time and/or
memory than Eq. 73 (otherwise we might as well do the fully implicit approach). Eq. 80 shows
that Λ∗ needs to be more easily inverted than Λ.

Some insight of the acceleration gained can be seen by writing

SFS,n = (1− ε)Λ[Sn] + εB, (81)

so
(Sn+1 − Sn)classic = SFS,n − Sn. (82)

With an approximate operator, on the other hand

(Sn+1 − Sn)ALI = [1− (1− ε)Λ∗]−1 [
SFS,n − Sn

]
. (83)

For an heuristic Λ∗ = 1 (e.g. large optical depth J ≈ S), we get an acceleration of order 1/ε (e.g.
Eq 5.45 in Rutten) by having coupling. Discuss: works only for Λ close to 1.

Note that from Eq. 83, iteration may preceed by calculating normal formal solutions, then
letting [1− (1− ε)Λ∗]−1 operate on SFS − Sn, and subtract Sn (so no need to let Λ∗ operate
directly on anything).

11.2.1 Choices of Λ∗

The approximate operator Λ∗ should have the desired properties

• Represent much of the basic physical properties of Λ, to make sure a significant part of the
problem gets ’implicitly treated’.

• Be fast and/or require less memory for construction and inversion than Λ.

Needless to say, this wishlist opens up a more or less infinite zoo of possible operators, each better
or worse for particular applications, and there is a vast literature on this topic.

In the classic literature terms like “diagonal” and “tridiagonal” dominate; the example problem is
almost always a mono-frequency 1D stellar atmosphere, so what varied along the array was just
the depth point. "Diagonal" then means only the local cell is coupled, while "tridiagonal" also
the neighboring shells/sheets are coupled. In a more generalized context, one may talk about the
size of the local region for which implicit coupling is expressed, "diagonal" then corresponds to the
local cell, "tridiagonal" to nearest neighbors (e.g. 6 cells in a Cartesian 3D grid) etc.

Diagonal (local) operator. In this approach Λ∗ contains only contributions by emission in the
local cell to create J . In the 1D gray case that means the diagonal elements of the matrix are
the only non-zero ones, and at each depth point there is a simple scalar division. This method
was initially presented by Olson et al. (1986), and is also called the "OAB method". The original
scheme uses Feautrier variables and the 2nd order form of the transfer equation (Olson & Kunasz
1987). The formal solution is done with the ’Hermite (differential) scheme’ of Auer (1976) which
is a variant of the Feautrier method. Local operators can be easily generalized to multi-D (OAB,
Rutten).

What may this actually look like in practice? Note that a diagonal operator does not have
to be the exact diagonal of Λ. We are free to choose any approximate formula we want. Some
examples are

• Escape probability (OAB). Λ∗ = 1 − βp(τ), where β is a free parameter and p(τ) is an
escape probability.
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• Approximate second order solution (AOB86). From

u′′(µ, τ) = u(µ, τ)− S(τ) (84)

Combine with the approximations

ui−1 = uie
−∆τi,i−1/µ, (85)

ui+1 = uie
−∆τi,i+1/µ (86)

To get

ui = Si
1

∆1∆2

[
−e−∆1 − e−∆2 + 2 + ∆1∆2

]−1
. (87)

Then
Λii =

∫
φx

∫
uidµ. (88)

• Gray case. Here can we use E1(0) from J =
∫
SE1(t)dt.

Jν(τν) =

∫
Sν(tν)E1(|t− tν |)dtν (89)

• Short-characteristics (Olson & Kunasz 1987). Used also in multi-D (Hubeny 2003).
The formal solution using first-order (linear interpolation) short characteristics is

I(τd, µ) = I(τd+1, µ)e−∆τd+1/2 + λ+
d,dSd + λ−d+1,dSd+1 µ > 0 (90)

I(τd, µ) = I(τd−1, µ)e−∆τd−1/2 + λ−d,dSd + λ−d,d−1Sd−1 µ < 0 (91)
(92)

where

λ+
d,d = 1− 1

∆τd+1/2
+
e−∆τd+1/2

∆τd+1/2
(93)

λ−d,d = 1− 1

∆τd−1/2
+
e−∆τd−1/2

∆τd−1/2
(94)

(95)

where ∆τd−1/2 = (τd− τd−1)/µ. Thus, keeping only the local term, and constructing J from
I:

Λ∗ν = 1− 1

2

∫ 1

0

(
1− e−∆τd−1/2

∆τd−1/2
+

1− e−∆τd+1/2

∆τd+1/2

)
dµ. (96)

Thus, to make the iteration we just multiply SFS − Sn with a scalar correction factor that
corresponds to this integral calculation, that for a fixed grid is constant through the iterations.

• Feautrier scheme (Rybicki & Hummer 1991). A drawback of the short characteristic
method is the costly evaluation of exponentials. Rybicki & Hummer (1991) showed that one
can obtain the exact diagonal of the Λ matrix in a cheap way by a Feautrier-like approach.
For a given frequency and angle, the solution to u can in general be written

u = T−1S, (97)

where u is the symmetric average of I, T is tri-diagonal, and there are Nd equations. From
u we get J from

Λ =

∫
T−1dµ. (98)

Thus we need the diagonal elements of T−1. Rybicki & Hummer (1991) showed how these
can be found through a recursive sweep algorithm with order Nd operations (see e.g. Hubeny
and Mihalas page 438 for details).

With a diagonal operator, convergence decreases with increased resolution (OAB).

22



Tridiagonal/one neighbour operator. This method is less sensitive to grid cell size than
the diagonal one. It was introduced by Olson & Kunasz (1987), who suggested to use short
characteristics to find the coefficients.

Pentadiagonal and higher-order operator. See e.g. Hauschildt 1992, 1994, MacFarline1992.
From extensive trial and error experiments reported in the literature, the benefits of fewer iterations
obtained by going to higher bands than tridiagonal has not turned out to outweigh the larger
computational costs, and Hubeny and Mihalas state that these methods are rarely used.

Upper tridiagonal operator. Scharmer 1981 (“core saturation” method). Eddington-Barbier.
Trujillo Bueno 1995. Upper diagonal does not extend to multi-D (Olson et al. 1986). Olson &
Kunaz 1987, using short characteristics.

• Core saturation operator. This method relates to transfer through lines. At high optical
depth we know that Jν ≈ Sν , so with a one-quadrature formula (Scharmer 1981), we simply
get Λ∗ii = 1. For optically thin case one may instead use the Eddington-Barbier approx-
imation, J = 1/2Sν(τν = γ).What is counted as optically thick can be controlled with a
parameter γ.

• Scharmer operator. The Scharmer operator relates to calculation of I, not J . Scharmer
set out to find functional forms that have the Eddington-Barbier form (Iν = Sν(f(µ))

Λ∗νµ = W±νµSνµ(fνµ(τνµ)) (99)

Eddington-Barbier approximation: Consider the transfer equation

dIνµ
dτνµ

= Iνµ − Sν (100)

Solutions are

I+
νµ =

∫ ∞
τ

Sν(t)e−(t−τ)dt (101)

I−νµ =

∫ τ

0

Sν(t)e−(τ−t)dt (102)

Now linearise the source function, Sν = a+ bτνµ. This gives

I+
νµ = a+ b+ bτνµ = 1× Sν(τ = τνµ + 1) (103)

I−νµ = a− b+ bτ − (a− b)e−τ =
(
1− e−τ

)
×
(
a− b+

bτ

1− e−τ

)
(104)

=
(
1− e−τ

)
Sν(τ =

bτ

1− e−τ
− 1) (105)

One here uses the property that for a linear source function, the exact solution corresponds
to S at one particular distance away. Thus, the matrix elements in Λ∗ have values W+ = 1
for outgoing beams and W− = 1 − e−τ for ingoing beams, and their locations are given by
τ + 1 for outgoing and bτ

1−e−τ − 1 for ingoing. Each row in the Λ∗ matrix has exactly one
entry.
This operator was implemented together with a complete linearization scheme for level pop-
ulations in Scharmer and Carlsson 1985. An advantage of the Scharmer operator is that it
allows for anisotropy in S (Rutten). However it does not generalize to multiD.

11.2.2 Spherical symmetry

Hamann 1985, 1986, 1987, Hempe & Schoenberg 1986, Schoenberg and Hempe 1986, Puls & Her-
rero: spherical case (sometimes velocity gradient). Diagonal operators.
Hillier 1990 (CMFGEN) : spherical, velocity gradient, multilevel. Tridiagonal, pentadiagonal op-
erator, but note that there are some subtle differences between Hilliers method and classic ALI,
which leads Hubeny and Mihalas to classify them as “approximate Newton Raphson” rather than
ALI.
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11.2.3 NLTE multilevel case

The more generic multi-level problem can be stated

Jν = Λ[Sν ] (106)
n = f1(J) (107)
Sν = f2(n) (108)

These equations may also be supplemented by an energy equation (radiative equilibrium for stellar
atm.) and hydrodynamic equations (hydrostatic equilibrium).

The level populations are normally considered separate for each species I (all ion. stages), and
when there is coupling (e.g. with charge transfer) one can typically use the last iterate for the
partner populations (Hubeny & Mihalas Ch 18). Treating also ne as fixed, the steady state rate
equations form a linear system

AInI = bI (109)

One of these equations has to be replaced by a number conservation equation. This choice is
arbitrary. The set of equation blocks for each species I is complemented with a charge neutrality
equations, matching ne with the sum of all ions.

Eqs. 108 provide a large set of coupled, non-linear equations (e.g. in rate equations level
populations are multiplied with J). “Complete linearization” is the term RT theorists use for
solving this full system by Newton-Raphson. All variables can be put together into a “state vector”
in each cell

ψd = {J1, .., JNF , T, ne, n1, .., nNL} (110)

of size NF +NL+NC, where NC is number of constraints (1-3).
All partial derivatives for all equations are computed, which forms the Jacobi matrix, and

iteration preceeds by
∆ψ = J−1e (111)
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where e is the current error matrix. In practise we can arrange the equations so to obtain a
block tridiagonal Jacobian, so inversion takes Nd (NNF +NNL)

3 operations (using a Feautrier-like
technique).

In the old literature problems where NF ∼ 100, NL ∼ 10 were treated, which meant that
equation system of size ∼ 1000 were inverted. However, in modern applications NF ∼ NL ∼ 105,
and simultaneous solution of the whole equation system (e.g. complete linearization) is ruled out.
Hubeny & Mihalas : This may perhaps be done on large parallell systems..discuss

In the general case its impossible to explicitly link J back into the RT equation; S depends on
the solution of a set of non-linear equations involving J . But with ALI we may use Λ∗ for simple
relations between J and S that can be worked in analytically or by compact matrix generation
code

Rutten describes Auer & Mihalas 1969 as first paper outlining complete linearization, i.e.
coupled solutions of statistical equilibrium and RT equations. Here level population correction
are replaced by sums over radiation field corrections, and these are solved for using the transfer
equation (Feautrier scheme in Auer and Mihalas). No real explanations in Rutten.

Scharmer & Carlsson 1985, on the other hand, use an approximate transport equation
when iterating the level populations. Note that the final answer is always the output of the
’classic’ lambda iteration, which can be seen as doing the approximate step plus the correction
step.

The problem is really fully specified by all level populations at all depths. Thus, if we can do
ALI in the J domain, it must be equivalent to doing it in the n domain, where some degree of
neighbour implicit coupling in each iteration, benefits convergence. This must be alternated with
the ’exact’ solution using the last guess for neighbors. Thus, one must do something clever/coupled,
alternated with standard, local, (linear) equation system solutions. Both MULTI and CMFGEN
do this (but the CMFGEN papers dont explicitly state this second correction, or lambda iteration,
step).

11.2.4 Multi-D

A diagonal operator is broadly considered the only practical choice for multi-D cases (Hubeny
2003). Tridiagonal and higher methods extend with difficulty to multi-level problems. See also
OAB86.

12 External accelerations

12.1 Ng acceleration
In Ng acceleration (Ng 1974), we aim to minimize the difference between a new estimate and the
next iteration based on that estimate (at convergence there would be no difference). If we have a
solution xn for iteration n, let an extrapolated solution x̂n be some linear combination of the last
3 solutions (one may also use more/less but this is the common choice)

x̃n = c0x
n + c1x

n−1 + c2x
n−2 (112)

under the constraint c0 + c1 + c1 = 1. Now lets say we want to minimize F [x̃n]− x̃n (i.e. the next
correction to our extrapolation), or rather the norm |F [x̃n]− x̃n|. This is a least-squares problem
(e.g. Hubeny and Mihalas), fitting two values c1 and c2 to minimize a sum of residuals. We are
basically saying, there is already a lot of converged or quasi-converged information in our current
estimate xn, but scalings are off and we want to correct those using c1 and c2.

Now, if F is linear, F [x̃n] = c0F [xn] + c1F [xn−1] + c2F [xn−2] = c0x
n+1 + c1x

n + c2x
n−1. Thus

with xn+1, xn, xn−1, xn−2 known, its an algebraic sum involving c0, c1, c2, easily calculable.
The solution is (Hubeny & Mihalas, see also OAB 1986)

c1 = (δ01δ22 − δ02δ21)/(δ11δ22 − δ12δ21) (113)
c2 = (δ02δ11 − δ01δ21)/(δ11δ22 − δ12δ21) (114)

where
δij =

(
∆xn −∆xn−i

)
·
(
∆xn −∆xn−j

)
(115)
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and
∆xn = xn − xn−1 (116)

Note that we need 4 consecutive solutions to make one acceleration. In practise one minimizes
a residual that uses weights Wi that can be chosen by various arguments (e.g. OAB86 uses
Wi = 1/xi):

Ω =
∑
i

[x̃i − F (x̃i)]Wi (117)

One may optimize over c coefficients locally (let them vary for each depth), or globally (one
and the same for each depth).

Ng accelaration can be done earliest in the 4th iteration, although one normally waits somewhat
longer as initial iterates are still far from convergence.

Ng acceleration is particularly useful in combination with ALI methods that are only ’moder-
ately’ fast in convergence on their own, such as local operators (OAB86).

12.2 ORTHOMIN
TBD..

12.3 Chebyshev acceleration
See Olson 1987. Hubeny & Mihalas : Not clear if can be used as a general RT method.

12.4 Broyden method
Instead of using Jacobian matrix, use Broyden matrix, which correspond to secant method in 1D.
Each inverse Broyden matrix can be calculated from the previous inverse without new inversion.

12.5 Kantorovich method
This method is simply to hold the Jacobian constant once one approaches convergence (“keep
tangent fixed”). Method has been shown to be surprisingly robust in RT context. One performs a
few normal NR iterations and then swicthes to constant Jacobian. A refreshment may be done at
some point.

12.6 Solution guiding
Any iterative scheme needs a good starting guess (even complete linearization), and sometimes
active guidance also in later steps. For example, one may “switch on” more and more detailed
physics in a a series of iterations such as

LTE-gray → LTE → NLTE-continua → NLTE-few lines → NLTE-many lines This may bring
about a solution in fewer steps than doing the full NLTE-lines calculations from scratch.

12.7 Successive overrelaxation
E.g. Trujillo Bueno 1995.

12.8 Problem simplification
To reduce the number of frequencies, levels and depth points that are implicitly coupled, one may
consider

• Implicit coupling only for some selected (judged important) frequencies and levels.

• Divide levels into superlevels, where LTE is assumed within each superlevel. A related idea
is level grouping, where corrections within a group of lines is constant.

• Reduce ND. Most algorithms are linear in ND so no big gain. Note that AMR methods
have not yet been used in RT codes, and this may be one of the most important remaining
improvements (Hubeny & Mihalas).
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Figure 2: Comparison of iteration schemes with and without Ng acceleration, from Hubeny 2003.

A Feautrier method
Solution method. For each depth point d, create vectors Īd+1/2 than contain Ī (see Eq. 61) for
each angle-frequency combination at that depth (so the Īd+1/2 vectors are of length NaNf ). We
have, at depth d, for angle-frequency point number i (Eq 83.17 in MM84)

µ2
i

1

∆τd+1/2,i

[
1

∆τd+1,i
Īd+3/2,i −

(
1

∆τd,i
+

1

∆τd+1,i

)
Īd+1/2,i +

1

∆τd,i
Īd−1/2,i

]
(118)

= Īd+1/2,i −
ηtd+1/2 +

∑
i′ σd+1/2,i,i′ Īd+1/2,i′

χd+1/2,i
(119)

Here quantities centred at cell mid-points have indeces of half (e.g. 3/2 for the first cell) and
quantities centred at cell edges have integer indeces (e.g. 1 for the first cell). For each depth,
there is spatial derivative coupling between Īd+1/2 and Īd−1/2 and Īd+3/2 for a given i. Then,
we can create (diagonal) matrices at each depth, Ad+1/2 and Cd+1/2, containing the discretized
derivative factors for Īd−1/2,i (third term on LHS) and Īd+3/2,i (first term on LHS), respectively:

Aiid+1/2 = µ2
i

1

∆τd+1/2,i

1

∆τd,i
(120)

Ciid+1/2 = µ2
i

1

∆τd+1/2,i

1

∆τd+1,i
(121)

Create also a (full) matrix Bd+1/2, which on the diagonal has derivative operators for Īd+1/2

(second term on LHS), a -1 (first term on RHS), and a coherent scattering term (for no deflection
coherent scattering i = i′ component of last summation term on RHS). The rest of the matrix is
filled with terms from discretization of the scattering term where angle and/or frequency changes
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(so the matrix is full).

Biid+1/2 = −µ2
i

1

∆τd+1/2,i

[
1

∆τd,i
+

1

∆τd+1,i

]
− 1 +

σd+1/2,i,i

χd+1/2
, (122)

Bijd+1/2 =
σd+1/2,i,j

χd+1/2
. (123)

On the RHS we obtain a vector Ld+1/2 with the fixed thermal part of the source term (numerically
known):

Lid+1/2 = −Std+1/2,i = −
ηtd+1/2,i

χd+1/2,i
. (124)

Note that for the same frequency, each entry in L is the same for isotropy in χ. The transfer
equations for each angle and frequency combination, for each depth d, is now a matrix system:

−Ad+1/2Īd−1/2 + Bd+1/2Īd+1/2 −Cd+1/2Īd+3/2 = Ld+1/2 (125)

Lower boundary condition. Specify an outgoing intensity I+
ν (τmax, µ) from the lower boundary

d = D. One may show (page 370 in Mihalas)

µ
∂Īν
∂τν taumax

= I+
ν (τmax, µ)− Īν(τmax, µ). (126)

Discretize:

µi
ĪD−1/2,i − ĪD+1/2,i

∆τD+1/2,i
= I+

D+1/2,i − ĪD+1/2,i, (127)

giving

AiiD+1/2 = − µi
∆τD+1/2,i

(128)

CiiD+1/2 = 0 (129)

BiiD+1/2 =
µi

∆τD+1/2,i
− 1 (130)

BijD+1/2 = 0 (131)

LiiD+1/2 = I+
D+1/2,i (132)

Upper boundary condition. The upper (outer) boundary condition is normally I− = 0. Then
one can show (Eq. 83.20 in MM84):

µ
∂Īν(µ)

∂τν
= Īν(µ), (133)

which discretized becomes (Eq. 83.36 in MM84)

µi
Ī5/2,i − Ī3/2,i

∆τ2,i
= Ī3/2,i

[
1 + 1/2∆τ3/2.i/µi

]−1
+
[
∆τ3/2,i/µi

] [
Ī3/2,i − S3/2,i

]
(134)

so (to be completed)

Aii3/2 = 0 (135)

Cii3/2 =
µi

∆τ3/2,i
(136)

Bii3/2 =
µi

∆τ2,i
− 1 (137)

Lii3/2 = ... (138)
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Solution technique. For the first depth point (d = 3/2), we get from Eq. 125

Ī3/2 = B−1
3/2C3/2Ī5/2 + B−1

3/2L3/2 (139)

Define D3/2 = B−1
3/2C3/2 and X3/2 = B−1

3/2L3/2. By substituting Eq. 139 into Eq. 125 for d = 5/2,
we get

Ī5/2 = D5/2Ī7/2 + X5/2 (140)

where D5/2 can be calculated from the known A5/2,B5/2,C5/2 and D3/2. The method is to
perform a forward-backward sweep to calculate all the D matrices, starting at the upper boundary
d = 1:

1. Compute all the Ad+1/2, Bd+1/2, Cd+1/2 matrices at each depth d.

2. Compute D3/2 = B−1
3/2C3/2.

3. Compute X3/2 = B−1
3/2L3/2.

4. Compute next Dd+1/2 =
[
Bd+1/2 −Ad+1/2Dd−1/2

]−1
Cd+1/2.

5. Compute next Xd+1/2 =
[
Bd+1/2 −Ad+1/2Dd−1/2

]−1 [
Ld+1/2 + Ad+1/2Xd−1/2

]
.

6. When you arrive at last depth point D, solve Īd+1/2 = XD+1/2.

7. Determine all other Īd+1/2 = Dd+1/2Īd+3/2 + Xd+1/2.

B Analytic solutions

B.1 The time-independent formal solution
Described in section 79 of Mihalas & Mihalas (1984). In plane-parallel geometry, the time-
independent radiative transfer equation is

µ
∂Iν
∂τν

= Iν − Sν . (141)

This can be rewritten as
∂[Iν exp (−τν/µ)]

∂τν
= −Sν exp (−τν/µ)

µ
. (142)

If the source function Sν is known, we can integrate Eq. (142):

I(τ1, µ, ν) = I(τ2, µ, ν)e−(τ2−τ1)/µ + µ−1

∫ τ2

τ1

Sν(t)e−(t−τ1)/µ dt. (143)

Eq. (143) is called a formal solution of the transfer equation. For the outgoing intensity (µ ≥ 0)
in a semi-infinite medium τ1 = τν and τ2 =∞. The formal solution is then given by

I(τν , µ, ν) =

∫ ∞
τν

Sν(t)e−(t−τν)/µ dt/µ, (0 ≤ µ ≤ 1) (144)

If we assume that no radiation is entering through the outer boundary (I−(0) = 0), we obtain

I(τν , µ, ν) =

∫ τν

0

Sν(t)e−(τν−t)/(−µ) dt/(−µ), (−1 ≤ µ ≤ 0). (145)

for the incoming radiation field (µ ≤ 0).
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Schwarzschild-Milne Equations
Using Eqs. (144) and (145) we can derive the following expression for the mean intensity

Jν(τν) =
1

2

[∫ 1

0

dµ

∫ ∞
τν

Sν(t)e−(t−τν)/µ dt/µ+

∫ 0

−1

dµSν(t)

∫ τν

0

e−(τν−t)/(−µ) dt/(−µ)

]
. (146)

To simplify the problem, we substitute w = ±1/µ and change the order of integration:

Jν(τν) =
1

2

[∫ ∞
τν

dtSν(t)

∫ ∞
1

dw
e−w(t−τν)

w
+

∫ τν

0

dtSν(t)

∫ ∞
1

dw
e−w(τν−t)

w

]
. (147)

By identifying the integrals that appear in Eq. (147) as the first exponential integral, we arrive at
a concise expression for the mean intensity

Jν(τν) =
1

2

∫ ∞
0

Sν(tν)E1|tν − τν |dtν . (148)

The exponential integral is defined by

En(x) ≡
∫ ∞

1

t−ne−xt dt = xn−1

∫ ∞
x

t−ne−t dt. (149)

Similarly, expressions for the next two moments can be derived:

Fν(τν) = 2π

∫ ∞
τν

Sν(tν)E2(tν − τν) dtν − 2π

∫ τν

0

SνE2(τν − tν), (150)

and
Kν(τν) =

1

2

∫ ∞
0

Sν(tν)E3|tν − τν |dtν . (151)

Due to the central importance of Eq. (148) in radiative transfer theory an abbreviated operator
notation has been introduced. Following this notation the mean intensity

Jν(τν) = Λτν [S(τν)] (152)

is obtained by applying the so-called lambda operator:

Λτ [f(t)] ≡ 1

2

∫ ∞
0

f(t)E1|t− τ |dt (153)

to the source function. Over time, however, the term ’lambda operator’ has taken on a broader
meaning, being used nowadays to describe any procedure (including non-analytic) to obtain J from
S.

B.2 Wave Limit
In a vacuum (χν = ην = 0) the transfer equation (26) reduces to[

1

c

∂

∂t
+

∂

∂s

]
Iν(x,n, t) = 0. (154)

Introducing
I+ ≡ Iν(x,n, t) (155)

and
I− ≡ Iν(x,−n, t) (156)

we obtain the transfer equations
∂I+

∂t
+ c

∂I+

∂s
= 0 (157)

and
∂I−

∂t
− c∂I

−

∂s
= 0 (158)
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from Eq. (154). Defining the mean-intensity-like quantity

j ≡ 1

2
(I+ + I−) (159)

and the flux-like quantity

h ≡ 1

2
(I+ − I−) (160)

addition and subtraction of Eqs. (157) and (158) yields

∂j

∂t
+ c

∂h

∂s
= 0 (161)

and
∂h

∂t
+ c

∂j

∂s
= 0. (162)

The quantities h and j will appear again later in the lecture when we will derive the Feautrier
Equations. Taking the partial derivative of Eq. (161) with respect to time and inserting Eq. (162)
in the resulting equation yields

∂2j

∂t2
= c2

∂2j

∂s2
. (163)

Similarly
∂2h

∂t2
= c2

∂2h

∂s2
(164)

can be obtained. Eqs. (163) and (164) are wave equations with the solutions

j(s, t) = A1f1(s− ct) +A2f2(s+ ct) (165)

and
h(s, t) = B1f1(s− ct) +B2f2(s+ ct). (166)

Here A1, A2, B1, B2 are constants that are determined by the initial and boundary conditions.
One possible solution of Eqs. (165) and (166) is a monochromatic, plane wave:

I(x, t; n′, ν′) = I0δ(s− ct)δ(n′ − n)δ(ν′ − ν) (167)

In this case Jν = Hν = Kν and the Eddington factor fν = 1.

B.3 Diffusion limit
The discussion below assumes a static medium and that the radiation field and the medium are in
thermal equilibrium. Radiative diffusion in moving media and in nonequilibrium are discussed in
section 97 of Mihalas & Mihalas (1984).

Static, LTE atmosphere
Described in section 80 of Mihalas & Mihalas (1984). For τν � 1 the source function Sν (see
Eq. (22)) approaches the Planck function Bν . It is thus possible to write the source function at
any optical depth tν as a Taylor expansion around some reference optical depth τν :

Sν(tν) =

∞∑
n=0

∂nBν
∂τnν

(tν − τν)n/n! (168)

Recall Eq. (144) for the intensity of outgoing radiation in a planar, static medium:

I(τν , µ, ν) =

∫ ∞
τν

Sν(τ ′ν)e−(τ ′ν−τν)/µ dτ ′ν/µ, (0 ≤ µ ≤ 1). (169)

The assumption of plane-parallel geometry is justified due to the small photon mean free paths.
Inserting the Taylor expansion of the source function into Eq. (169) yields

I(τν , ν) = Bν(τν) + µ
∂Bν(τν)

∂τν
+ µ2 ∂

2Bν(τν)

∂τ2
ν

+ . . . (170)
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For −1 ≤ µ ≤ 0 the intensity can be calculated in a similar fashion using Eq. (145). The result is
identical to Eq. (170) apart from terms of the order of exp(−τ/µ), which vanish for τ →∞. From
the defining Eqs. (5), (8) and (15) we find

Jν = Bν(τν) +
1

3

∂2Bν(τν)

∂τ2
ν

+ . . . (171)

Hν =
1

3

∂Bν(τν)

∂τν
+

1

5

∂3Bν(τν)

∂τ3
ν

+ . . . (172)

Kν =
1

3
Bν(τν) +

1

5

∂2Bν(τν)

∂τ2
ν

+ . . . (173)

for the moments of the specific intensity. Replacing derivatives by difference quotients
(i.e. ∂Bnν (τν)/∂τnν → Bν/τ

n
ν ), we see that the ratio of successive terms is of O(1/τ2

ν ) = O(λ2
ν/l

2).
Here λν denotes the photon mean free path and l is a characteristic structural length (e.g. a
pressure scale height in a stellar envelope.) Since the ratio λν/l is small (typical values in the sun
range from 10−7 to 10−10) it is sufficient to retain only the first terms in Eqs. (171) to (173):

Jν(τν) = 3Kν(τν) = Bν(τν) (174)

Thus both the mean intensity Jν and the radiation pressure Kν have their equilibrium values. In
contrast to equilibrium the flux

Hν =
1

3

∂Bν(τν)

∂τν
= − 1

3χν

∂Bν
∂T

dT

dr
(175)

is nonzero. By integrating this expression over frequency, we obtain the total flux

F = −(4π/3)

(∫ ∞
0

1

χν

∂Bν(τν)

∂T
dν

)
dT

dr
. (176)

This equation is formally identical to Fourier’s Law for heat conduction. Introducing the so called
Rosseland mean opacity

χ−1
R =

∫ ∞
0

1

χν

∂Bν(τν)

∂T
dν

/∫ ∞
0

∂Bν(τν)

∂T
(177)

we can define a radiative conductivity

KR =
4π

3χR

dB

dT
=

4

3
cλRaRT

3 (178)

in analogy to the thermal conductivity.

In conclusion, at large optical depths the transfer problem can be described by the single equation
Eq. (175), which behaves like a diffusion equation. The dimensionality of the problem has been
reduced from six to one!

B.4 The Grey Atmosphere
For a grey material the opacity is independent of frequency i.e. χν = χ. As a consequence the
radiation field becomes independent of the state of the material.

Applications
• Starting point in the calculation of more complex models. For stellar atmospheres it is typical

to proceed through a series of intermediate models with increasing physical complexity e.g.
LTE-gray → LTE → NLTE

• Test problem for numerical methods

• Provides boundary conditions for stellar structure calculations

• Neutron transport in heavy-water nuclear reactors
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Basic Results
Frequency integration of the time independent, planar transfer equation yields:

µ
∂I

∂τ
= I − S (179)

Here I ≡
∫∞

0
Iν dν and S ≡

∫∞
0
Sν dν denote the total intensity and source function respectively.

For a grey material the radiative equilibrium condition∫ ∞
0

χνJν dν =

∫ ∞
0

χνSν dν (180)

reduces to the simple requirement J = S. Using this result Eq. (179) can be simplified as follows:

µ
∂I

∂τ
= I − J (181)

This is the transfer equation for a plane-parallel, grey atmosphere in radiative equilibrium. From
the first moment of the transfer equation

dH

dτ
= J − S = 0 (182)

we see that the flux is constant throughout the atmosphere. This is a general result for static,
planar atmospheres in radiative equilibrium. The second moment equation is given by

dK

dτ
= H, (183)

which has the solution
K(τ) = Hτ + c =

1

4π
Fτ + c. (184)

Recall that for large optical depths the specific intensity can be approximated as I(µ) = I0 + I1µ,
which implies that K(τ) = 1/3J(τ). From this and Eq. (184) we infer that

J(τ)→ 3

4π
Fτ (τ � 1). (185)

The general solution can then be written as

J(τ) =
3

4π
F (τ + q(τ)), (186)

where q(τ) denotes the as of yet undetermined Hopf function. It is possible to connect the constant
c in Eq. (188) for the second moment of the radiation field to the newly introduced Hopf function
by taking the limit of large optical depths:

lim
τ→∞

[
1

3
J(τ)−K(τ)

]
=

1

4π
F lim
τ→∞

[τ + q(τ)− τ − c] = 0 (187)

Thus c = q(∞) and the second moment is given by

K(τ) = Hτ + c =
1

4π
Fτ + q(∞). (188)

LTE
If LTE is assumed (i.e. Sν = Bν) it is possible to assign a temperature T to the radiation field via
the radiative equilibrium equation:

J(τ) = S(τ) = B[T (τ)] = σRT
4/π (189)

Defining the effective temperature Teff as the temperature a black body would have to reproduce
the emergent flux (i.e F = σRT

4
eff), we can rewrite Eq. (186) in terms of T

T 4 =
3

4
T 4

eff [τ + q(τ)] (190)
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Mean Opacities
See section 3-2 in MH78. The goal is to define mean opacities in such a way that the general
equations

µ(∂Iν/∂z) = χν(Sν − Iν) (191)

∂Hν/∂z = χν(Sν − Jν) (192)

∂Kν/∂z = −χνHν (193)

can be reduced to their grey counterparts

µ(∂I/∂z) = χ(S − I) (194)

dH/dz = 0 (195)

dK/dz = −χH. (196)

It is impossible to achieve a complete correspondence between the grey and nongrey problem.
However, suitable choices of the mean opacity can establish one to one correspondences for selected
quantities.

Rosseland Means

If the goal is to reproduce the correct integrated energy flux H, the mean opacity must be defined
as follows:

−
∫ ∞

0

χ−1
ν (∂Kν/∂z) dν =

∫ ∞
0

Hν dν = H = −χ̄−1(dK/dz). (197)

χ̄−1 =

∫ ∞
0

χ−1
ν (∂Kν/∂z) dν

/∫ ∞
0

(∂Kν/∂z) dν (198)

Since Kν is not known a priori, it is necessary to find approximations in order to evaluate
the opacity. At high optical depths Kν → 1/3 Jν , Jν → Bν and we can write ∂Kν/∂z =
1/3 (∂Bν/∂T )(dT/ dz). With these simplifications Eq. (198) can be written as

1

χ̄R
=

∫∞
0

1
χν

∂Bν
∂T dν∫∞

0
∂Bν
∂T dν

. (199)

The assumptions used to derive the Rosseland mean are the same as those used in the diffusion
approximation. It is thus appropriate to use Rosseland means to describe radiative diffusion at
high optical depths. This allows the determination of the thermal structure of the atmosphere at
great depths via

T 4 =
3

4
T 4

eff(τ̄R + q(τ̄R)). (200)

Flux-Weighted Mean

To transform the nongrey equation for the second moment Kν [Eq. (193)] into the grey equation
(196) the mean opacity must be defined as follows

χ̄F ≡ H−1

∫ ∞
0

χνHν dν. (201)

This opacity is the flux-weighted mean of the frequency dependent opacity χν . We can verify that
the definition in Eq. (201) has the desired properties by integrating Eq. (193) over frequency:

− (dK/ dz) =

∫ ∞
0

χνHν dν = χ̄FH (202)

Thus K(τ̄) = Hτ̄ + c applies as in the grey case. This guarantees that the correct values for the
radiation pressure and radiation force are recovered. This is of relevance for the calculation of the
density structure of the atmospheres of early-type stars.
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Planck and Absorption Means

Whereas the Rosseland mean is the appropriate average for optically thick systems the Planck
mean is suitable for optically thin systems. For details see section 3-2 in MH78.

Eddington approximation
We know that at high optical depths J = 3K holds. In the Eddington approximation this condition
is applied throughout the entire atmosphere. In combination with K = 1/(4π) · Fτ + c this
simplifying assumption leads to the following expression for the mean intensity

JE =
3

4π
Fτ + c′. (203)

Recall the formal solution for the flux at optical depth τν

Fν(τν) = 2π

∫ ∞
τν

Sν(tν)E2(tν − τν) dtν − 2π

∫ τν

0

SνE2(τν − tν). (204)

The flux at the outer boundary is then given by

F (0) = 2π

∫ ∞
0

(
3

4π
Fτ + c′

)
E2(τ) dτ = 2πc′E3(0) +

3

4
F

[
4

3
− 2E4(0)

]
. (205)

From F (0) = F follows that

c′ =
3

4π

E4(0)

E3(0)
F. (206)

Using the relation En(0) = 1/(n−1) we find that c′ = F/(2π). This implies that the mean intensity
is given by

Je =
3

4π
F

(
τ +

2

3

)
. (207)

Thus the Hopf function in the Eddington approximation is q(τ) = 2/3. In LTE the temperature
structure is determined by

T 4 =
3

4
T 4

eff

(
τ +

2

3

)
. (208)

Since T = Teff for τ = 2/3, this optical depth is commonly identified as the effective depth
of continuum formation. Despite the simplyfing Eddington approximation Eq. (208) provides a
quite accurate description of the thermal structure of a grey atmosphere. We expect the greatest
departures from the analytic solution to occur close to the boundary. However, the ratio of the
boundary temperature T0 to the effective temperature in the Eddington approximation T0/Teff =
0.841 still agrees fairly well with the analytic solution T0/Teff = 0.8114.

Solution with discrete ordinates
For an in-depth discussion see section 3-2 of MH78. Both approximate and exact solution can be
obtained by replacing the integrals in the transfer equation

µ[∂I(τ, µ)/∂µ] = I(τ, µ)− 1

2

∫ 1

−1

I(τ, µ) dµ (209)

with quadrature sums i.e.
1

2

∫ 1

−1

I(τ, µ) dµ ≈ 1

2

n∑
j=−n

ajIj(µj) (210)

This reduces the integro-differential equation to a system of 2n coupled ordinary differential equa-
tions. In the limit of n → ∞ this approximation becomes exact and allows the derivation of the
analytic solution.

Spherical Geometry
A discussion of grey spherical atmospheres in LTE and radiative equilibrium can be found in section
7-6 of Mihalas (1978).
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