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1 Radiative transfer in a moving medium
When the medium is moving, Doppler effects impact the radiative transfer. Particularly important
are Doppler-induced frequency changes in line transfer problems, because lines have such narrow
absorption and emission profiles, set by the thermal velocity scale which is of order a few km/s,
much smaller than Doppler velocities in stellar winds and explosions, where kinematic velocities
vary on order 100 or 1000 km/s.

Moving media may be divided into steady and non-steady flows. A steady flow is for example
a stellar wind - there is an important, and often differential, velocity field - but the domain looks
the same at all times. A non-steady flow is for example a supernova explosion - a nebula is born
that expands and the density field is different at different times.

1.1 Reference Frames
The laws of physics are the same in all inertial frame, and by the use of proper fictitious forces
the laws can also be formulated in non-inertial frames. We can use this freedom to work in the
frame which gives the most tractable formulation for the problem at hand. We will later see that,
in fact, for moving media we often use different frames for different spatial points. In Monte Carlo
simulations we follow photon packets through the medium - jumping between different frames that
are "best for the moment".

There are three main reference frames which are of fundamental importance in radiative trans-
fer:

1. Atom frame ("AF"). The frame in which the individual atom (or other particle, e.g. an
electron) undergoing an interaction (emission, absorption, scattering) has zero velocity.

2. Lab frame ("LF", or "observer-frame (OF)"). The frame in which the observer, or
sometimes the star (or corresponding system) as a whole, is at rest (meaning the momentum
vector of the system as a whole is zero).

3. Comoving frame ("CMF", or "Lagrangian frame (LF)"). Frame at (x,t) in which
the integral of velocity vectors in a small volume around x is zero. Since the matter seen
as "bulk" is at rest in this frame, the opacity, and in many cases also the emissivity, are
isotropic. This is the key property that makes the CMF attractive to work in.

Note that the CMF in a strict sense is not an inertial frame, as the matter bundle, and therefore
the frame itself, may accelerate. This acceleration effect can for almost all applications be ignored,
however. The CMF of a given bundle can therefore be considered as a time-sequence of inertial
frames, each moving with the instantaneous velocity of the fluid element under consideration.

The particularities of the CMF instead arises from another direction. If we write down any
non-local physical law, such as the RT equation, in "the CMF", we are in fact writing a relation
that describes something happening as we change frames from one CMF (e.g. starting point of a
ds path segment) to another (ending point of the ds path segment). Terms will emerge due to this
connection between two (quasi)-inertial frames.

Lorentz transformations give two important effects for RT, namely the Doppler shift:

ν′ = γν (1− n · v/c) , (1)
ν = γν′ (1 + n′ · v/c) , (2)

and the aberration

n′ = (ν/ν′) (n− γv/c)
[
1− γn · v/c

γ + 1

]
, (3)

n = (ν′/ν) (n′ + γv/c)

[
1 +

γn′ · v/c
γ + 1

]
. (4)

Here, we adopt the notation that CMF frame quantities are primed. In 1D, the aberration formulae
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simplify to (µ = cos θ, where θ is the angle to the radial direction):

µ′ =
µ− v

c

1− v
cµ
, (5)

µ =
µ′ + v

c

1 + v
cµ
′ . (6)

Thomas [1930] derived the transformation laws for the specific intensity

I(ν, µ) =
( ν
ν′

)3

I ′(ν′, µ′), (7)

the emissivity

η(ν, µ) =
( ν
ν′

)2

η′(ν), (8)

and the absorption coefficient

χ(ν, µ) =
( ν
ν′

)−1

χ′ (ν′) . (9)

Due to the direction-dependence of ν/ν′ (Eq. 2), Eqs. 8 and 9 tell us that in the observer frame,
emission and absorption coefficients are always angle-dependent.

1.2 The RT equation in the comoving frame
When the fluid is accelerating (as e.g. during a SN explosion) or there is velocity gradient (as in
the coasting phase of a supernova), it is difficult to solve the RT equation in the observer frame,
because the motions cause ην and χν to become anisotropic as shown above. One approach is
to simplify the RT equation with first-order expansions for ην and χν . This method is described
in section 93 in Mihalas and Mihalas [1984]. The limitation of this method is when lines are
important; the first-order expansions are then insufficient. One then normally works in the CMF,
as described in section 95 in Mihalas and Mihalas [1984]. Here χν , and for many applications also
ην , is isotropic and the matter-radiation interaction calculations become easier. The drawback is
a more complex RT equation, induced by the change of frames.

The fully relativistic CMF RT equation is, even in spherical symmetry, a very long expression
[Eq. 95.9 in Mihalas and Mihalas, 1984]. The moment equations are also lengthy (Eqs. 95.11 and
95.12). If we retain only terms to order v/c, and also ignore the fluid acceleration terms (involving
dv/dt), we get in spherical symmetry (Eq. 95.17 MM84):

1

c

DI ′

Dt
+
µ

r2

∂

∂r

[
r2I ′

]
+

∂

∂µ′

(
(1− µ′2)

[
1

r
+
µ′

c

(
v

r
− ∂v

∂r

)]
I ′
)

− ∂

∂ν′

(
ν′
[
(1− µ′2)

v

cr
+
µ′2

c

∂v

∂r

]
I ′
)

+

[
(3− µ′2)

v

cr
+

(1 + µ′2)

c

∂v

∂r

]
I ′ (10)

= η′ − χ′I ′,

where D/Dt = ∂/∂t + v∂/∂r. The many terms have their origin from that along a Lagrangian
path, there are now changes in angle and frequency, in addition to space and time. Compare e.g.
to the equation solved by the CMFGEN supernova code [Hillier and Dessart, 2012], which operates
under the assumptions 1) v/c� 1 and 2) homology (dv/dr = v/r):

1

c

∂I ′

∂t
+
µ′c+ v

c

∂I ′

∂r
+

(1− µ′2)

r

∂I ′

∂µ′
− vν′

rc

∂I ′

∂ν′
+

3v

rc
I ′ = η′ − χ′I ′. (11)

Exercise 1: Derive Eq. 11 from Eq. 10 (by inserting the homology relation).

The complexity of the CMF RT equation even in 1D (terms 4 and 5 on the LHS do not exist in
the lab frame, and term 2 is here also more complex) means solving it will be yet more challenging
- frequencies and angles are now coupled even if they are not through the emissivity function (see
week 1 lecture notes). This hints at attractiveness of a Monte Carlo approach for moving media,
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instead of solving the PDE by discretization and algebraic equation system solving. In MC, we
follow packets along their trajectories and update the energy, frequency, and propagation angle(s)
along the way; this is not really more difficult in a moving medium compared to a stationary one -
there are just more transformations to be done. And it’s not really more difficult in 3D compared to
1D. The RT equation, on the other hand, "explodes" in its dimensionality and number of variable
couplings, as it by construction keeps track of "everything, everywhere, at once".

1.3 Line absorption in supernovae
We will now look at how transfer through a line occurs in a moving medium. A photon can be
absorbed and cause a photoexcitation of a bound electron from a lower state l to an upper state
u. This is also called a bound-bound transition. The cross section can be written

σbbν = Φ0φ(ν − ν0) (12)

where φ is the line profile (unit s, per Hz), which is normalized. The strength of the line is given
by the parameter

Φ0 =
hν0

4π
B, (13)

where B is the Einstein absorption coefficient which is of order 1010 for an optical resonance line.
Thermal broadening is of order vth =

√
3kT/mp ∼ 10 km s−1, so the width of the line profile

function is ∆νth = ν0vth/c ∼ 1013 Hz.
The excited atom typically relaxes back by spontaneous emission (rate A s−1, where A is

the Einstein emission coefficient), either in the same transition (“resonance scattering”) or in a
set of branching ones (“fluorescence”). It can also be collisionally deexcited by a free electron
(“thermalization”), but the chance of this is typically quite small.

1.3.1 Line blocking

Material from an explosion, like the galaxies in the Universe (from Big Bang) or the layers in a
supernova, move at different velocities described (approximately) by homology v ∝ r. One may
show that in such homologous flows, each point sees the other points moving radially away from
it with velocity proportional to the distance (think of Hubble’s law for galaxies). If a photon is
emitted at a comoving wavelength λ1 at point 1, when it arrives at point 2, moving away from
point 1 with relative velocity ∆v, it will have a redshifted comoving wavelength (ignoring the γ
factor)

λ2 ≈ λ1

(
1 +

∆v

c

)
(14)

Thus, as a photon travels from point to point, it is continously redshifted in each
local, comoving frame.

Consider what this means for transfer through lines. If emitted in a frame with comoving
wavelength λstart, the photon will come into resonance with a line at λ0(> λstart) only after
travelling a distance corresponding to velocity difference ∆v ≈ c × (λ0/λstart − 1). Giving the
line profile a finite width ∆λth (given by thermal motions), the interaction region is a small length
interval corresponding to where the comoving wavelength is in the range λ0−∆λth/2 to λ0+∆λth/2.
This length is called the Sobolev length, LSob.

In supernovae v/c ∼ 0.01−0.1. This is much larger than the thermal line widths: vth/c . 10−4.
This means that

1. The Sobolev length is much smaller than the radial scale of the SN and a given photon
interacts in a small local region with any given line.

2. A photon can sequentially come into resonance with many lines, at sequential points along
its path. If there is a distance vedge to the edge of the nebula (as perceived from the emitting
frame), the photon will be exposed to absorption by all lines with rest wavelengths lying in
the range from λstart to λstart × (1 + vedge/c).

Property 1 means a simplification of the line transfer process as each interaction can treated
as a local event and whether absorption happens or not depends just on local gas conditions, and
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there is no dependency on detailed line profile shapes. Property 2 means a complication compared
to static nebulae, where any given photon only interacts with a single line, here we need to consider
the complex problem of line interlocking.

Local line interaction (The “Sobolev limit”). The photon will ’traverse’ the line profile
over a length LSob = vth/(dv/dr), where dv/dr is the velocity gradient. As v = r/t in homology,
dv/dr = 1/t and LSob = vtht. As vth � v this region is small compared to the size of the SN, vt.
For a top-hat line profile (φ = 1/∆νth):

τSob = σbbnlLSob =
hν0

4π
B

1

∆νth
× nl ×

∆νth
ν0

ct =
hc

4π
Bnlt (15)

where nl is the number density of the lower (absorption) level of transition. The result holds, in
fact, irrespective of the shape of φ, as seen from a more rigourous integration:

τSob =

∫
σbb(ν′(s))nl(s)ds =

∫
Φ0φ(ν′)nl(s(ν

′))
ds

dv

dv

dν′
dν′ =

hν0B

4π
nl

∫
φ(ν′)× t× c

ν0
× dν′ =

hν0Bnlct

4πν0
=

c2

2hν3
0

A
hct

4π
=

1

8π
Aλ3

0nlt, (16)

where in the last step we have assumed the resonance region to be small enough that nl(s) is
constant over it. The optical depth depends only on the local number density (nl) at the point of
resonance. Ignoring changes in ionization/excitation, nl ∝ t−3 in homology, so τSob ∝ t−2 .

Expansion opacity. If there is a typical velocity separation ∆vsep between optically thick lines
around wavelength λ, the mean-free path is λmfp = ∆vsept (note we use now λ for both mean-
free-path and wavelength, the former has a mfp subscript). Write ∆vsep = c∆λsep/λ. Then, since
κ = 1/(λmfpρ),

κline,expλ ≈ λ

ctρ∆λsep
(17)

A more refined formula can be obtained from knowing the probability that line i interacts is
1− exp

(
−τ iSob

)
. Then refine the formula as

κline,expλ ≈ 1

ctρ

1

N

N∑
i=1

λi
∆λi

(
1− e−τ

i
Sob

)
(18)

where the set of N lines have to be chosen over some wavelength range centred on λ.
This is called an expansion opacity. Figures 1 shows an illustration. Note that this is not

an exact local opacity like the usual ones - this is because line interaction is not a continuous
process but occurs at discrete points in the Sobolev limit. As opacity can only be defined as some
integral/summation over lines, there is always some degree of arbitrariness how this is done - N is
basically a free parameter in Eq. 18. Line opacity is together with Thomson opacity typically the
most important in SNe.

Finally, for line absorption fluorescence is often a more frequent deexcitation process that
scattering back into the same transition (Fig. 2). Complex fluorescence means the emergent
spectra of SNe are, in detail, complex to model. In particular at late times several years after
explosion, models have shown that the whole optical spectrum of SN can come from fluorescence
of UV emission.

2 Line formation in early (“photospheric”) phases of a super-
nova

Because v = rt in homology, all points on a sheet perpendicular to the line of sight (LOS) have
the same LOS velocity and give the same Doppler shift relative to the observer (Fig. 3). If the
sheet is emitting in a line with rest wavelength λ0, the observer will see emission at wavelength
λ0 × (1 + vlos/c), where positive projected velocities are away from the observer (to the right in

5



Figure 1: Top: Opacities in a Type IIP SN layer at 11,000 km/s at t = 15d. Bottom: Thomson
opacity and line opacity in two layers in a Type Ia SN around maximum light. From Sim 2017.

Figure 2: Fluorescence redistribution in a model of SN 1987A at an age of 8 years. From Jerkstrand
et al 2011.
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Figure 3: Illustration of how a sheet perpendicular to the LOS has constant LOS velocity, and
therefore constant Doppler shift with respect to the observer. The bottom panel shows the corre-
sponding wavelengths if each LOS point, in this example λ values are calculated for vmax/c = 0.03.

the figure). If the line absorbs, the sheet is capable of blocking photons at λ0 in the CMF, equal-
ing λ0 × (1 + vlos/c) in the LF, travelling from the region it covers from the observer, giving an
absorption line at the same wavelength.

The scattering atmosphere (also called the Schuster-Schwarzschild model) is a simplified model
framework where blackbody radiation is emitted from an inner boundary - the photosphere - and
then scatters (by electron scattering and line scattering) in the outer layers. It is a simplified
concept because in a real supernova

• The location of the photosphere (formally defined as where optical depth integrating from
the outside inwards is τν = 2/3) varies with frequency.

• Even for a fixed frequency, the photosphere does not sharply divide into a scattering-only
region on the outside and a thermalization-only region on the inside.

In fact, advanced radiative transfer models for SN spectra do not rely on the scattering atmo-
sphere ansatz but model also the transition region and the deeper layers. Nevertheless, it is a
framework that allows a good understanding of the basic processes forming the spectrum, and
rough spectral models to be developed that by comparison with observations allow reasonably ac-
curate estimates of the density profile and composition of the outermost layers. It is the foundation
for the open-source supernova spectral modelling codes SYNOW/SYN++ [Thomas et al., 2011] and
TARDIS [Kerzendorf and Sim, 2014].

Consider a scattering atmosphere where line absorption is treated in the Sobolev limit. We will
study what line profile arises from a single optically thick line (τSob � 1), with the two parameters
h = vphot/vmax, where vmax denotes the maximum velocity at which the line is optically thick,
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Figure 4: Geometry of P-Cygni line formation. The observer is towards the left.

and ε is the “destruction probability” (probability 1− ε for scattering).

Consider Fig 4. We delineate two cases.

• Case I. h < 1/
√

2 = 0.71. The photosphere is fully blocked by certain sheets (in B region)
→ complete absorption at the Doppler velocity of those sheets.

• Case II. h > 1/
√

2. The photosphere is never fully blocked by a sheet → only partial
absorption.

The ABC regions behave as following:

• Region A: The whole resonance sheet covers (part of) the photosphere. The area of the
sheet grows going inwards (towards the rest wavelength), giving a deeper absorption as a
larger fraction of the photosphere gets blocked.

• Region B-Case I: (Part of) the resonance sheet covers the whole photosphere. Complete
absorption is produced throughout region B.

• Region B-Case II: The (whole) resonance sheet covers part of the photosphere. The sheet
area is constant, giving a flat bottom in the absorption profile but at non-zero flux. The
absorption depth increases with decreasing h.

• Region C. Part of the sheet covers part if the photosphere. A declining fraction of the
photosphere is blocked moving towards the centre, giving declining degree of absorption
moving towards the rest wavelength.

Exercise 2. P-Cygni lines arise when lines scatter photospheric radiation in a moving
atmosphere. Use the code in mode "linescattering", to study P-Cygni line formation. Cre-
ate a figure showing a simulated P-Cygni line, where you mark out how the parameters
(vphot, vmax, ε) can be determined.

By inferring vmax, one may be able to determine the density of the element at that velocity by
equating the line optical depth to unity there.
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Exercise 3. From a SN spectrum observed at 50d post-explosion, vmax for the Ca II
triplet is inferred to 10,000 km/s. If T = 6000 K and you can assume all Ca is in the Ca
II ionization stage, and excited levels are in LTE, what is the calcium density at this velocity?

You can find information on atomic energy levels here:
https://physics.nist.gov/PhysRefData/ASD/levels_form.html,
and on line transitions here:
https://physics.nist.gov/PhysRefData/ASD/lines_form.html.

One should note, however, than in more realistic models the interpretation of line profiles can be
more complex (see e.g. Fig 6 in Sim 2017). The Sobolev line optical depth is a function of velocity
(it’s a local quantity) and does not give a sharp boundary as here. Also, there may be emission in
the line in the atmosphere by additional processes than resonance scattering (e.g. recombination).

2.1 Thermal line broadening
We have so far assumed that scattering has been fully coherent in the comoving frame, so the
photons just change direction but not frequency when they scatter. While this is an accurate de-
scription in the atom frame (for the type of interactions currently being considered), the atom has

a thermal velocity in the comoving frame. This thermal velocity is vtherm ≈
√

3kT
m (from 3/2kT =

1/2mv2), wherem is the mass of the atom. This becomes vatomtherm = 11 km s−1 (T/5000 K)
1/2

A−1/2,
where A is the atomic mass. This is small compared to the Doppler broadening occurring due to
the SN expansions which is typically 103 − 104 km s−1.

For an electron, however, the thermal broadening is ve−therm = 480 km s−1 (T/5000 K)
1/2. Thus

electron scattering, especially multiple ones, is capable of broadening (emission) lines with & 103

km s−1. This is still quite a minor effect in SNe emitting lines from regions moving with several
thousand kilometers per second. But some SNe, in particular Type IIn, emit lines also from slower-
moving material, ∼ 100 km s−1. If these layers are hot, the line profiles may become determined
by thermal broadening rather than expansion broadening.

Exercise 4. Use the code in mode "electronscattering" to simulate emission profiles from a
uniform sphere (take vlim = vmax = 1000 km/s) with different degrees of electron scattering
opacity. Study what happens when the electron scattering optical depth is raised from 0
to 1 to 2. For a fixed optical depth (e.g. τes = 1), how does the temperature impact the
line profile (compare e.g. 0 K, 10,000 K, and 30,000 K)? Make two figures showing these
comparisons.

3 Line formation in late (“nebular”) phases of supernovae
At later times (& 100d), the photosphere disappears (it continuously recedes inwards in mass
coordinate) and we enter the nebular phase. Now, the spectrum consists of emission lines. As
powering comes from radioactivity, emission comes mainly from the inner regions where 56Ni
resides. Figure 5 shows an example of an observed nebular spectrum illustrating the quite different
nature to photospheric spectra.

3.1 Line profiles
Let us consider line profiles of emission lines arising for a few simple cases of geometry. Figure 6
shows line profiles in six cases, of which we comment on three:

• Uniform sphere (upper left). Letting vp denote the component of vmax perpendicular to
the line-of-sight, each sheet contributes flux at wavelength λ0vlos/c in proportion to its area
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Figure 5: Example of an observed nebular spectrum from a low-velocity Type IIP SN, from Benetti
et al. 2001. As the photosphere has disappeared there are no P-Cygni lines, instead the spectrum
is made of emission lines, some of which are very prominent. Models show that what looks like
“continuum” (e.g. between 6600-7000 Å) is in fact thousands of overlapping weaker emission lines.

which grows as π (vpt)
2

= πt2
(
v2
max − v2

los

)
= πt2v2

max

(
1− (vlos/vmax)2

)
. The line profile

is therefore a parabola.

• Thin shell (upper middle). A slice of a shell can be shown to give a constant area, so the
line profile becomes a flat top.

• Gaussian (bottom left). One can show that also the line profile becomes a Gaussian.

For further details of the derivations see Jerkstrand 2017, Handbook of SNe.

3.2 Luminosity
The profile-integrated emissivity of a line is

j̃ =
1

4π
nuhνAβSob erg s−1cm−3ster−1 (19)

where nu is the number density of the upper level of the line (unit cm−3), A is the Einstein A-
coefficient (rate of spontaneous radiative deexcitation, unit s−1) and βSob = (1−e−τSob)/τSob is the
Sobolev escape probability : the chance that an emitted photon will escape the local line resonance
region rather than be reabsorbed. Consider two limits:

• Optically thin line (βSob → 1). The total volume-integrated luminosity is then L =
4πj̃ × V = NuhνA = Mion

µion
× fu(T, ne)hνA, where the function fu(T, ne) determines what

fraction of the ions of this type are in state u. If this can be estimated, one may then be able
to determine the mass of the ion.

• Optically thick line (βSob → 1/τSob). The total luminosity is now L = V × nuhνA
hcBnlt

,
where B is the Einstein B- coefficient. Because B can be related to A, this can be written
L = V × t−1 × gul(T, ne) where the function gul determines the ratio of populations gu/gl.
Thus, if this can be estimated one can determine the volume of the emitting region.
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Figure 6: Nebular line profiles for 6 different cases. From Jerkstrand 2017 (Handbook of SNe).

To get either a mass or volume then, we need to know what fraction of atoms for that ion is in the
upper state u (optically thin case), or what the ratio of upper and lower state populations (nu/nl)
are (optically thick case).

At high electron density, collisions dominate the populations and depopulations of states, and
then the fu and gul functions depend only on temperature (“Local Thermodynamic Equilibrium
(LTE)” limit). Thus, in this limit only T needs to be estimated. However, one should be careful:
the fu and gul functions have exponential dependencies on the temperature. Thus, if ∆E � kT ,
where ∆E is the excitation energy of the upper level Eu for optically thin lines and Eu − El for
optically thick ones, even small errors in the T estimate can give very different factors. The result
will only be robust if ∆E . few× kT .

4 Monte Carlo Radiative Transfer
Monte Carlo (MC) methods refer to a class of algorithms making use of random sampling to solve
mathematical or physical problems. The method has its original applications based on physical
experiments whose random outcomes would mimic the problem. For example, let’s say you want
to determine the area of an odd shape drawn on the floor in a room. One way you could do this
would be to throw a bouncing ball say 100 or 1000 times into the room, and after bouncing around
on the walls see what percentage of time the ball comes to rest within the domain.

With the rise of computers, and development of algorithms able to create (pseudo) random
numbers, MCmethods became increasingly popular in the 1950s. In the late 1960s, MC calculations
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finally entered the astrophysics stage with studies such as Avery and House [1968], Auer [1968] and
House and Avery [1968]. In the time since, MC methods have become established, successful, and
reliable tools for the study of a variety of astrophysical radiative transfer phenomena.

What is random, exactly? A point is worth dwelling on for a moment is that the randomness
in a MC method can refer to very different things. Quantum mechanics established that nature
itself is random - a huge conceptual leap in physics. Therefore, MC methods can directly simulate
this randomness e.g. by making random draws on which deexcitation paths an excited atom will
take or how radioactive nuclei decay. The power of MC methods in this regime is that the MC
packets become tracers automatically following the most important paths in the system. MC noise
will be smallest where it’s most useful that it’s small - in the dominant flow channels and output
signals. It allows a compute power optimization that qualitiatively does not exist when solving RT
equations. But conversely, if one is interested in some rare or energetically unimportant signal, a
MC approach may not be a good idea.

But these kind of problems - randomly sampling the true randomness in nature - are only one
subgroup of MC methods. In other groups of methods, the random draws may instead be used
for..

1. Selecting injection particles.

2. Choosing interactions outcomes which in principle are deterministic (e.g. scattering angle as
depending on impact parameter), but are chaotic (e.g. very sensitive to initial conditions)
and/or the incoming particles would fill a property space that one wants to avoid keeping
track of the details for.

3. Random sampling as an approximate statistical description of a process or domain that is
deterministic but the full details are not meaningful. For example, for transfer through a
domain characterized by a large number of clumps, randomization of paths and clump en-
counters captures the physical effects without needing to specify and keep track of a complex
specific realization [e.g. Jerkstrand et al., 2011].

The common denominator for the different MC method groups is really that one uses physical
insight to replace complex, exact equation solving with statistical descriptions that are easier to
code, and in addition gives the algorithm a built-in power to spend compute power where it most
matters. The focus shifts from large equation system solving and numerics, to the microphysical
interactions, particle-by-particle.

4.1 Monte Carlo basics
True randomness is difficult to achieve on a machine that is inherently deterministic (quantum
computers are not yet here), but for essentially all practical purposes the “pseudo-randomness”
that computers can produce are sufficient [see e.g. Kalos and Whitlock, 2008, §9]. Based on a
starting value (referred to as a seed), these algorithms provide sequences of numbers ξ, typically
uniformly distributed over the interval [0, 1]. Such sequences are referred to as “pseudo” random
since they share statistical properties with true randomness but are still generated by relying on
deterministic prescriptions.

The probability that a random variable X takes a value within [x, x + dx], is encoded in the
so-called probability density function (PDF) ρX(x)dx, which fulfills the normalization∫ ∞

0

ρX(x)dx = 1. (20)

The cumulative distribution function (CDF) is the probability that X takes a value between 0 and
x:

fX(x) =

∫ x

0

ρ(x′)dx′. (21)

Unlike the PDF, which is always positive but not necessarily monotonous, the CDF per construction
always is. Consequently, a 1-to-1 mapping between two cumulative probability distributions can
be established via

fX(x) = fY (y). (22)
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This is the fundamental relation needed for sampling a probability distribution ρX(x) using draws
from another one, ρY (y). Using the random numbers ξ, uniformly distributed between 0 and 1
and thus giving a CDF fξ(ξ) = ξ, this simplifies to

fX(x) = ξ. (23)

Inversion of this equation results in the central sampling rule

x = f−1
X (ξ). (24)

Example 1: Scattering angles. Consider the situation of isotropic scattering of a photon. In
this case, no propagation direction after the interaction is preferred and the probability that the
photon escapes into a specific solid angle element dΩ = dφdθ sin θ (with φ ∈ [0, 2π] and θ ∈ [0, π])
is constant

ρ(φ, θ) dφ dθ sin θ = c1. (25)

With the introduction of the µ parameter

µ ≡ cos θ, (26)

and writing ρ(φ, θ) = c2 × ρ1(φ)ρ2(µ) (no correlation exists between the angles so the joint PDF
is separable) this reduces to

ρ1(φ) = c3, (27)
ρ2(µ) = c4. (28)

Normalization gives ∫ 2π

0

c3dφ = 1→ c3 =
1

2π
, (29)

and ∫ +1

−1

c4dµ = 1→ c4 =
1

2
. (30)

Then, fρ1(φ) = φ/ (2π) and fρ2(µ) = 1
2 (µ+ 1). Finally, equate the CDFs with the uniform random

number ξ and solve for φ and µ, giving (careful to use two different random numbers ξ1 and ξ2)

φ = 2πξ1, (31)
µ = 2ξ2 − 1. (32)

Example : Interaction point. Another important application of random sampling is the decision
of when the packet will interact. The probability of interaction per path segment ds, assuming the
packet has survived to point s, is given by the absorption coefficient χ (unit cm−1). The probability
to have survived to at least s is as function g(s) that is simply the complement g(s) = 1− f(s) to
the CDF function f(s). The probability to interact in [s, s+ds] is then given by g(s)−g(s+ds) =
g(s)× χ(s)ds, or

− dg(s)

ds
= g(s)χ, (33)

which, if χ is constant, has solution

g(s) = exp (−χs). (34)

Finally, obtain the random sampler for s by replacing g(s) with 1− f(s) and inverting, giving

s = − ln (1− ξ)
χ

. (35)

By using an optical depth variable τ instead of a positional variable s, we can also allow for χ
varying along the path, and the corresponding sampling becomes

τ = − ln (1− ξ). (36)

13



This is a powerful result because it means we can determine the "life span" τ of any packet at it’s
creation - and simply find the point in the domain where this τ will be reached. We can transport
the packet directly to that point, and compute the interaction there, usually with another random
sampling process.

Non-analytic CDFs. In these examples so far, the underlying cumulative distribution function
could be inverted analytically to give direct formulas for the random sampling. Naturally, this is
not always feasible, and in such cases one has to rely on numerical integration and bin finding,
which raises the cost of the random sampling significantly. Significant literature exists on doing this
as efficiently as possible for commonly used non-integratable PDFs, such as the Planck function
[Fleck and Cummings, 1971, Carter and Cashwell, 1975, Bjorkman and Wood, 2001].

Exercise 5: Derive the CDF for Thomson scattering, which has a PDF
ρ2(θ) = 3/8

(
1 + cos2 θ

)
sin θ. Is this CDF invertable to give an equivalent expres-

sion to Eq. 32? Plot the Thomson CDF against the isotropic one and discuss with your
neighbor whether you think it’s worth implement a numeric sampling algorithm.

Packet propagation and interaction. Figure 7 shows an illustration of how the next interac-
tion point, and process, is selected. While line interactions are local and "stand-alone" (Sobolev
limit), if interaction occurs by continuum absorption, a random draw determines which of the sev-
eral contributing opacities should be selected. This would in the simplest case be done by assigning
selection probabilities in proportion to the contribution to the total opacity:

pbf =
χbf

(χbf + χff + χes)
, (37)

pff =
χff

(χbf + χff + χes)
, (38)

pes =
χes

(χbf + χff + χes)
. (39)

Whenever a packet experiences an interaction, its properties are updated in accordance with the
physical laws underlying the interaction as outlined in the next section. Following these principles,
each packet is moved through the domain until a termination condition is reached. Depending
on the problem, this may be an absorption interaction, or the packet reaching a domain surface
or simply that a pre-defined amount of physical time has elapsed. The propagation process is
complete after all MC packets have been processed in this manner. During the propagation pro-
cess, various events may be recorded or the change of certain packet properties tracked. These
may then be used to reconstruct physical properties of the radiation field as described further below.

4.2 Interaction Processes
In moving media it is common to adopt a so called mixed frame approach for the calculation
of the packet trajectories and interactions. All tasks regarding radiation-matter interactions are
handled in the CMF as motivated earlier. The energy and wavelength of the packet are maintained
in the current CMF, continuously being transformed to new CMF as the packet reaches new
points. The spatial packet propagation is carried out in the lab frame since the discretization of
the computational domain is done in this frame.

If v/c� 1, as typically the case for both SNe v/c . 0.03) and KNe (v/c . 0.2), we really don’t
need to worry about the effects on relativistic beaming or movement of the grid over the photon
flight time, these lead to changes of the emergent intensities of order v/c. The only important
effect induced by the motion is the frequency Doppler shift as vthermal � v, v/c shifts easily shift
photons into and out of resonance with lines also when v/c � 1. Thus, this limit can follow the
scheme

1. From a starting (E′0, ν
′
0, µ
′
0) in the CMF at radius r0, take the lab frame angle as µ0 = µ′0.
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Figure 7: Schematic diagram of the accumulated optical depth τ along a packet trajectory [taken
from Noebauer and Sim [2019], in turn adapted from Mazzali and Lucy [1993]]. The optical depth
τ exhibits a linear increase with the traveled distance s due to continuum opacity from bound-free,
free-free and Thomson scattering processes. Discontinuous jumps occur at the Sobolev points,
where the packet comes into resonance with a line. At the start of a propagation step, a random
optical depth τn is assigned to the packet. The next event is then identified by finding the position
at which the accumulated optical depth of the packet τ(s) = τn. This is illustrated for four
exemplary random optical depths, resulting in (I) a continuum absorption,(II) a line absorption
and (III) escaping the cell boundary.

2. Compute the LF distance d to the next interaction point (ignoring movement of the nebula
during the photon flight1)

3. Move packet to the point of next interaction (depends on d and µ0), i.e. update the values
for r and µ. This may involve stopping at cell boundaries to update opacity values.

4. Transform the pre-interaction packet properties from the first CMF ("0") to the new CMF
("1"), (E′0, ν

′
0, µ
′
0)→

(
E′1,in, ν

′
1,in, µ

′
1,in

)
.

5. Impose energy conservation in the new CMF; E′1,in = E′1,out to fix the post-interaction
energy E′1,out. For coherent scattering in the CMF the post-interaction frequency is given by
ν′1,in = ν′1,out. If, for example, the interaction is a line absorption with radiative rate A to
resonance scatter and A/2 to fluoresce, giving two photons of frequency 1/3ν0 and 2/3ν0 in
the down-cascade, we can keep the condition E′1,out = E′1,in by assigning probabilities

pres =
Ahν0

Ahν0 + 1
2Ahν0

1
3 + 1

2Ahν0
2
3

=
4

9
, (40)

Pf1 =
1
2Ahν0

1
3

Ahν0 + 1
2Ahν0

1
3 + 1

2Ahν0
2
3

=
1

9
, (41)

Pf2 =
1
2Ahν0

2
3

Ahν0 + 1
2Ahν0

1
3 + 1

2Ahν0
2
3

=
2

9
, (42)

By weighting the transition probabilities with the transition energies like this, one can avoid
needing to split the MC packets, which makes codes easier to construct and the runs are more
controllable. By enforcing Eout = Ein in each interaction, one also enforces the radiative
equilibrium condition, which acts as a Lambda accelerator for MC algorithms.

6. Sample a new propagation direction µ′1,out, e.g. via µ′1,out = 2ξ − 1 if isotropic scattering.

1The errors in r and µ for the new CMF, ignoring the nebula motion, is of order v/c, which is . 0.1 for SNe and
KNe. Consideration of this effect requires, in general, a time-dependent MC simulation where packets are moved in
small time steps, the spatial grid is updated, etc.
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7. Loop over.

When the packet reaches the outer edge of the domain, a final transformation to the LF (=observer
frame) gives the recorded properties of the packet for the observer.

4.3 Estimation of Radiation Field Quantities
The MC packet trajectories can be used to reconstruct radiation field quantities. In general, we
need these to compute radiative ionization, excitation and heating rates, which all depend only on
various moments of the radiation field, such as Jν .

We can compute the angle-averaged mono-chromatic photon number density in cell i
as [Lucy, 1999]:

4πψi,ν =

∑pass,i
p=1

Ep

hνp

δtp
∆t

Vi
, (43)

where Vi is the cell volume and summation occurs over all packet path segments in the cell, with
lengths lp = cδtp. ∆t is the time duration of the MC simulation (usually 1 s). If we don’t divide
out the photon energies hνp we get an estimator for the monochromatic radiation energy
density

Ei,ν =

∑pass,i
p=1 Ep

lp/c
∆t

Vi
, (44)

Making use of the relation Jν = c
4πEν (see introduction week lecture notes, section 3.1) we get

Ji,ν =
1

4π∆Vi∆t

pass,i∑
p=1

Eplp. (45)

In analogy, higher moments of the specific intensity may be reconstructed. In 1D:

Hi,ν =
c

4πVi∆t

pass,i∑
p=1

Epµplp, (46)

Ki,ν =
1

4πVi∆t

pass,i∑
p=1

Epµ
2
plp. (47)

One can simplify even further. If the main goal of the simulation is to estimate for example a
photoionization rate, we can directly accumulate this estimator from

γi =

∫ ∞
0

Jν
hν
σνdν =

1

4πVi∆t

pass,i∑
p=1

Eplp
hνp

σ(νp) (48)

So the radiation field Jν does not even need to be reconstructed and stored in each cell - not an
issue for 1D modelling but perhaps for 3D.

Note that with these volume-based estimators, we (1) do not rely on any boundary crossings,
and (2) packets contribute to estimators also when they travel between interaction points.
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Exercise 6. Modify the code to emit a blackbody spectrum from the photosphere, and
then compute the mean intensity as function of velocity coordinate. This means

• Develop a random sampler for T = 8000 K blackbody emission from the photosphere.
Set vlim(= vphot) = 5000 and vmax = 10000 km/s. Note that the wlmin and wlmax
parameters have to be changed to now allow binning of a full blackbody range of
photon energies.

• Choose an atmosphere - meaning define some sort of obstacles to the radiation. Easiest
will be to add a bunch of lines (adding line and electron scattering opacity together
will require some code reworking), with ε values of your choice.

• Insert an accumulator to compute Ji,ν in each shell i, following Eq. 45.

• Run the simulation, save the Ji,ν vectors.

• Post-process these to compute the radiative heating rate in erg/s/cm3 (derive the
formula first) due to ground state ionization of H, for some assumed density of H, and
that all H is in the ground state (this process does not need to be part of the actual
MC simulation).

Bonus (if you have time) only): Replace the single-shell format of the code with multiple
shells (take e.g. 10 equally spaced), and compute the heating rate as function of velocity
coordinate.
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