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Overview

A CCSN explosion deposits an energy Edep ∼ 1051 erg in the core of the star.
This energy is spread to the whole star by a shock wave propagating with
vshock ∼ 104 km s−1. It reaches the surface after a time tsurf = R0/vshock,
where R0 is the stellar radius. We can estimate tsurf ∼1 minute for R0 = 1 R⊙,
tsurf ∼1 day for R0 = 500 R⊙ (Red SuperGiant (RSG)). This begins the light
display.

Equipartition. In the limit of strong shocks (vshock ≫ vsound), one can
show that radiation-dominated gas fulfills equipartition:

E0
int = E0

kin =
1

2
Edep (1)

I.e., in the shock wake, energy is equally divided between internal random energy
and bulk kinetic energy (as the layers are both accelerated and heated). This
limit is a good approximation for SNe (vsound ∼ 10 km s−1).

Basic physics of the fireball

The first law of thermodynamics states that “the change in internal energy
equals energy deposited, minus (net) energy transported out, minus work done
(pdV)”. For a moving gas we write this law on Lagrangian (comoving) form,
where m is he coordinate rather than x or v:

δeint(m, t)

δt
= s(m, t)− ∂L(m, t)

∂m
− p(m, t)

∂ (1/ρ(m, t))

∂t
(2)

Here eint is the internal energy per unit mass (erg g−1), s is the energy injection
per unit mass and time (erg s−1 g−1), L is the luminosity (erg s−1), p is pressure
(barye =dyne cm−2 = erg cm−3), and ρ is the density (g cm−3).

Energy density eint. The internal energy consists of i) kinetic motions of
particles (3/2kT/ (Amp)), where A is the atomic weight, ii) radiation field en-

ergy and iii) potential energy (excitation and ionization,
∑Nions

i=1

∑Nlevels
j=1

ǫi,j).
In SNe radiation energy typically dominates. For a radiation field in thermal
equilibrium:

eint ≈ eradint = aT 4/ρ (3)

where a is the radiation constant a = 7.56× 10−15 erg cm−3 K−4.
Pressure p. The pressure can be expressed in terms of T and ρ by an

equation of state, which for radiation-dominated gas depends only on T and is

p =
1

3
aT 4 =

1

3
eintρ (4)

Homologous expansion. Quite soon the material reaches ballistic trajecto-
ries (velocity V constant). After some further time, R ≈ V t holds, so called
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homology. Then ρ(t) ∝ M/R(t)3 ∝ t−3 and

∂1/ρ

∂t
=

−3

ρt
(5)

We will return later to the term for radiation transport. If we assume both this
term and s(m, t) are unimportant, we get the adiabatic limit:

δeint(m, t)

δt
= −eint(m, t)

t
(6)

which has solution eint = eint,0 (t/t0)
−1

or T 4/t−3 ∝ t−1 → T ∝ t−1 .

Diffusion and light curve duration

Let λ be the mean-free-path, the typical length photons travel before interacting

with matter. We have λ = 1/(κρ), where κ is the opacity (cm2 g−1). The time
between interactions is then λ/c. If N is the required number of scatterings to
escape the nebula, the total diffusion time is tdiff = Nλ/c. One can show that
N ≈ τ2 where τ = R/λ is the optical depth. Then

tdiff (t) =
R(t)2κ(t)ρ(t)

c
(7)

Using homology (R(t) = V t) and ρ ≈ M/(4π/3R3), we get

tdiff (t) =
3

4π

κ(t)M

V tc
(8)

Using E = 1/2MV 2, and finally equating tdiff (∆t) = ∆t, where ∆t is the
typical duration of the light curve, we get

∆t = 30d E
−1/4
51 M

3/4
M⊙

κ
1/2
0.4 (9)

where E51 = E/1051 erg, MM⊙
= M/1 M⊙, and κ0.4 = κ/0.4 cm2g−1.

That the SN diffuses as long as t . tdiff (so tdiff (∆t) = ∆t) can be shown
from numeric simulations, but also also qualitatively understood. If tdiff ≪ t
the diffusion phase is already over and the LC is declining. If tdiff ≫ t the
radiation will take much longer than t to get out and the LC is still rising.
The peak occurs roughly when these time-scales match. Although a simplistic
derivation, the scalings (the exponents) are quite accurate compared to actual
numerical simulations. The weak sensitivity to E means that one can estimate
Mκ2/3 quite accurately from the duration of the LC (uncertainty in E has minor
impact).
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Type IIP SNe : considering recombination

The behaviour of Type IIP SNe is somewhat more complex due to rapid time
and space-dependent changes in opacity. When the temperature in a layer
reaches the H recombination temperature (Trec ∼ 6000 K), the opacity drops
to almost zero and energy in that shell is released. A better approximative
approach is to combine L = 4πR2σT 4

rec and L = Eint(t = ∆tIIP /2)/∆tIIP =
(ER0/V∆tIIP ) /∆tIIP (we deployed here the adiabatic limit), to get

∆tIIP = 40d E
−1/8
51 R

1/4
0,500M

3/8
M⊙

(10)

Here σ = 5.67× 10−8 erg cm−2 s−1 K−4 is the Stefan-Boltzmann constant and
R0,500 = R0/500R⊙. In this framework

• The dependency on E and M is weaker than in Eq 9. This weakness
means the LC duration (alone) does not constrain these parameters to
high accuracy.

• R0 replaces κ as a parameter. But weak dependency also for R0.

We know that RSGs have R0 ∼ 500 R⊙. If we assume E51 = 1, their typical
duration of 120d tells us M ∼ (120/40)8/3 ∼ 18 M⊙.

These analytic considerations are not only useful for simple fitting proce-
dures. They fundamentally tell us about sensitivities and what is likely to be
obtained from carrying out more detailed simulations. For example, it is clear
that E and R0 cannot readily be extracted from a IIP LC length, no matter
how detailed model. The weak scaling also give us a first explanation for the
relatively homogeneity of IIP light curves; they all have rather similar length
(120d). As different progenitors would still have R0, E and M similar to factor
few, the variety in ∆tIIP is quite small.

Brightness

a) Explosive energy release

One can show that with only explosive energy, the LC reaches bolometric peak
almost immediately, and then declines. The typical brightness can be estimated
as the internal energy at time ∆t divided by the diffusion time tdiff ≈ ∆t.
Using again the adiabatic limit:

L ≈ E/2(R(t = ∆t)/R0)
−1

∆t
=

E/2R0

V∆t2
=

E/2R0

21/2E1/2M−1/2∆t2
(11)

Insert now ∆t = 30d E
−1/4
51 M

3/4
M⊙

κ
1/2
0.4 from above. Then

L = 3× 1042E51M
−1

M⊙
R0,500κ

−1

0.4 erg s−1 (12)

We make the following observations
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• Brightness increases (linearly) with E. This is not as simple as “put
twice as much in and twice as much comes out”. Higher E leads to a
larger energy reservoar (E1 factor), but also to higher velocities, which
gives stronger adiabatic degradation to a given radius (E1/4 factor). But
this is offset by a shorter diffusion time (E−1/4 factor), so these two effects
cancel and leave only the first one.

• Brightness increases (linearly) with R0. This is because larger R0

means less adiabatic cooling can occur for a given time. Compact stars
like Wolf-Rayet and He cores have R0 ∼ 1 R⊙. Then, without further
energy input they peak at about 1040 erg s−1. Explosion of whife dwarfs
(R0 ∼ 0.01R⊙) would peak at 1038 erg s−1.

• Brightness decreases (linearly) with M . Increasing M leads to lower
velocities, higher densities, and more trapping of the radiation. Radiation
then gets spread out over a longer diffusion time (M3/4 factor), and also
degrades more adiabatically (M1/4 factor).

• Brightess decreases (linearly) with κ. Spreading the energy release
over a longer diffusion time both dilutes by the time itself (κ1/2 factor) and
leads to more adiabatic degradation over this longer time (κ1/2 factor).

However, it turns out that only Type II SNe, which come from RSGs, have light
curves governed by release of energy deposited in the explosion. Type I SNe
come from compact stars (white dwarfs, Wolf-Rayet stars, He stars), but are
still as bright as Type II SNe. The explanation for this is that SNe also have
another energy source; radioactivity.

Type IIP SNe

With the alternative derivation for Type IIP SNe, one gets

L ∝ E3/4M−1/4R
1/2
0 T 2

rec (13)

All scalings here are weaker than in Eq 12. Considering both equations, the
brightness is mainly a potential diagnostic of E, but also this dependency is
sublinear. Fig. 1 shows a collage of observed IIP light curves.

b) Radioactivity

Table 1 shows the peak brightness of different transients predicted by Eq. 12
and observed ones. It is clear that, apart from Type IIP SNe, the theory of shock
deposited energy leakage is not the right explanation for SN brightness. Instead,
the energy release for Type Ibc, Ia and KNe is dominated by radioactivity. The
most important isotope for SNe is 56Ni, which decays to 56Co on a time-scale
of 8d, and then to 56Fe on a time-scale of 111d. A total 56Ni mass of ∼ 0.1 M⊙
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Figure 1: A collection of Type IIP bolometric light curves. Can you explain why
plateau durations are similar, but brightness vary a lot, both during plateau and
in the nebular tail phase? Why does brighter plateau associate with brighter
tail phase? From Maguire et al. 2010.

is made in CCSNe and ∼0.5 M⊙ in TNSNe. Q-value = 5.5 MeV/decay → total
energy decay is

Edecay ≈ M(56Ni)

56mp
× 5.5× 106 eV ≈ 2× 1049

(

M(56Ni)

0.1 M⊙

)

erg (14)

where 1 eV = 1.6× 10−12 erg. This is over 20 times smaller than the explosive
energy, but released on long time-scale which avoids much adiabatic degradation
(factor ∼ 104 for R0 = 1 R⊙ and t = 10d).

Star SN type R0 Lpeak (Explosive, Eq 12) Lpeak (Observed)
(R⊙) (erg/s) (erg/s)

RSG IIP 500 3× 1041 (MM⊙
= 10) 3× 1040 − 3× 1042

BSG II-pec 50 3× 1040 (MM⊙
= 10) ∼ 1× 1042

WR star Ibc 5 3× 1040 (MM⊙
= 10) ∼ 1× 1042

WD Ia 0.01 6× 1037 (MM⊙
= 1) ∼ 1× 1043

NS KN 10−4 6× 1037 (MM⊙
= 0.01) ∼ 1× 1042

Table 1: Peak luminosities of different SN classes.
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One can show that to within factor 2 or so, radioactive powered LCs obey
“Arnett’s law”

Lpeak ≈ S(tpeak) (15)

where S denotes the total energy injection rate (
∫

sdm). This is useful to
estimate the 56Ni mass in SNe. For example, 56Co decay obeys roughly

S = 1.4× 1042
(

M(56Co)

0.1 M⊙

)

exp (−t/111d) erg/s (16)

Exercise: The brightest supernovae peak at L ∼ 1044 erg/s after about 30d.
Can they be radioactively powered?

Solution: Arnett’s law: M(56Ni) = 10 M⊙. But ∆t = 30d → E
−1/4
51 M

3/4
M⊙

κ
1/2
0.4 =

1 → M = 1 M⊙E
1/3
51 κ

−2/3
0.4 . Unless E and κ are unphysically large/low,

M(56Ni) > M , which of course is impossible. In addition, the spectra show
mostly O, Mg, and Ca, not Fe. Therefore, it has been proposed that the pow-
ering comes from something else (more later).

Surface temperature and spectral shape

Define the photosphere Rphot as the radius from which photons can escape freely
(τ ≈1). Assume for now this is wavelength independent. Assuming blackbody
emission, we have

L(t) = 4πRphot(t)
2σTphot(t)

4 (17)

Writing Rphot(t) = Vphot(t)t:

Tphot(t) =

(

L(t)

4πσVphot(t)2

)1/4

t−1/2 (18)

For order of magnitude, take typical Lpeak = 1042 erg/s, tpeak = 30d and
Vphot = 5000 km/s, → Tphot = 5300 K. SNe peak at “optical temperatures”
(Tsun = 5800K).

For the radioactivity peak:

• During pre-peak: L is increasing (and Vphot is decreasing) so Tphot evolves

slower than t−1/2, and can even increase.

• Around peak: L is roughly constant, Vphot is slowly decreasing, so Tphot

follows t−1/2 or somewhat slower. This means that redder bands peak later.

• During post-peak: L is decreasing rapidly, while Vphot evolves slowly, and

evolution is typically faster than t−1/2.

Figure 2 shows an observed evolution in these three phases. Typically,
observations of L and Tphot are used to determine the Rphot(t) evolution,
which constrains models. At about twice the peak time, the diffusion is
over and the SN enters the nebular phase. The assumption of a photo-
sphere emitting a blackbody then breaks down.
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Figure 2: Evolution of light curve in different photometric bands (left) for a
radioactivity-powered Type IIb SN and (right) Tphot evolution (black dots, ig-
nore other plotted quantities). From Ergon et al. 2014.

Application: AT2017gfo - the first kilonova

August 17 2017: First gravitational wave detection of two merging neutron stars
at 40 Mpc. A SN-like transient, called kilonova (KN), followed (see Fig. 3). It
had the following properties:

tpeak = 1 day (19)

Lpeak = 1042 erg s−1 (20)

Tphot ∼ 8500 K. (21)

Exercise: Estimate M , E, κ from these three observables. Also need to know
s = 4× 1043MM⊙

t−1.2
days erg/s for KNe.

Solution:

A. From Arnett’s rule, MM⊙
= 1042/(4× 1043 × 1−1.2) = 0.025.

B. From LC duration:

E
−1/4
51 M

3/4
M⊙

κ
1/2
0.4 =

1

30
(22)
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Figure 3: The first kilonova. Top left : location of the transient compared to
the region indicated by the gravitational wave detection. Top right : Image of
the KN and its host galaxy. Bottom right : Photometric evolution in different
bands; successively longer wavelengths from U to K. From Smartt et al. 2017.

C. From blackbody equation

Vphot(t = tpeak) =

(

Lpeak

4πt2peakσT
4
phot

)1/2

= 6× 109 cm s−1 = 0.2c (23)

D. Now, approximate E = 1/2MV 2
phot. Then

E51 = 1/2× 0.025× 2× 1033 ×
(

6× 109
)2

/1× 1051 = 0.9 (24)

Finally, plug back into step 2:

κ0.4 =

(

1

30
× 0.91/4 × 0.025−3/4

)2

= 0.27 (25)

So κ = 0.4× 0.27 = 0.11 cm2 g−1.

Kilonovae have one fundamental difference to SNe: the power term is di-
rectly related to MM⊙

because all the ejecta is radioactive. In SNe only 56Ni
is radioactive. This means that we have five unknowns (M,M56Ni, E, V, κ), but
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still only 4 equations (1-4 above). The typical solution is to assume a value for
κ (or calculate it given a composition).

There is a possible fifth equation to use: consideration of escape of gamma
rays from the ejecta (which becomes optically thin to Compton scattering after
a few months). But it requires late-time data, and in principle introduces also
yet another parameter: the mixing (location) of 56Ni in the ejecta.

Another difficulty is what velocity to use for proxy to V =
√

2E/M . Vphot

can be quite different and is not very accurate in general, but there are no other
options, unless one wants to compute more advanced models.

Exercise: Assume that κ is well known, but there is a factor 2 error in
estimating V . What error does this lead to in M? In E?
Solution: Cancelling M in the equations above, one obtains E ∝ ∆t2V 3κ−1. A
factor 2 error in V thus gives a factor 8 wrong E. Instead cancelling E, one
obtains M ∝ ∆t2V κ−1, thus mass obtains a factor 2 error.

10-1 100 101

Days since explosion

39

40

41

42

43

Lo
g 

L 
(e

rg
 s

-1
)

Mej 0.017 0.034 M⊙

vej 0.2c 0.2c

κ 0.1 0.1 cm2g−1

β -1.3 -1.0

χ2
red 2.6 2.1

a

Figure 4: Observed bolometric light curve of the first kilonova, and two simple
models. These models use semi-analytic expressions (the luminosity at time
t is an integral of the energy input at all ealier times, weighted by a kernel
that depends on ejecta properties. Such formulas can be derived from basic
equations such as Eq. 2 plus certain simplifying assumptions. From Smartt,
Chen, Jerkstrand et al, Nature 2017.

Radiation-matter interactions

The interaction of photons and matter is dominated by photon-electron inter-
actions. The electron can be free, or bound in an atom (or molecule or dust
grain). We will consider four main processes.
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1) Electron scattering

In the frame of the electron, for Ephoton ≪ mec
2(511 keV), photons scatter,

i.e. change direction but not energy. This is called Thomson scattering. Often
the most important source of interaction. The cross section is wavelength-
independent (“gray”) : σes = 6.7× 10−25 cm2. Then

κes =
neσes

ρ
=

nnucleonsYexe

nnucleonsmp
= 0.4Yexe cm2g−1 (26)

where Ye = ne/(nnucleons) is the electron fraction, xe is the ionization degree
(0-1). Examples:

• Pure H, fully ionized : Ye = 1, xe = 1, → κes = 0.4 cm2g−1.

• Pure He, singly ionized: Ye = 0.5, xe = 0.5, → κes = 0.1 cm2g−1.

All elements except H have Ye ≈ 0.5. If half ionized, κes = 0.1. Often used
approximation when little else known.

At Eγ & mec
2, the recoil energy of the electron becomes a significant fraction of

the photon energy: the scattering becomes incoherent as the photon always loses
a significant fraction of its energy. In this limit (called Compton scattering), the
cross section is also smaller, declining with energy. At 1 MeV is is 1/3σT .

How long is a spherical SN of mass M and kinetic energy E, optically thick
to electron scattering?

τes = κesρR = κes M

4π/3R2
= κes M

4π/3V 2t2
= κes M2

8π/3Et2
(27)

Putting τes = 1 we get

tthick = 160d (κes
0.4)

1/2
MM⊙

E
−1/2
51 (28)

But Type IIP SNe have MM⊙
≈ 10 and then we get tthick = 1600d. We know

that they become optically thin to electron scattering much earlier, around 200d.
The reason for the discrepancy is that they continously recombine (so κes

0.4 ∼ 1
is not accurate). By 200d, xe ∼ 0.01, which brings κ0.4 down to 0.01, and tthick
down to 200d.

What about Ia SNe? They are ∼ 1 M⊙ ejecta of mostly iron. Spectra tell
us ejecta are roughly doubly ionized, so xe ∼ 2/26 = 0.08, so κes = 0.016, and

(κes
0.4)

1/2
= 0.2, giving tthick ≈ 30d. Similar parameters hold for Ibc SNe, so we

conclude these diffuse for a few weeks.

2) Free-free absorption

A photon can be absorbed by an electron in the presence of a third positively
charged body such as a proton or a He+ ion. Averaged of a thermal distribution
of electrons:
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κff
λ = 0.8T

−1/2
4 λ3

µm

(

1− e−hc/λkT
)( ne

1013 cm−3

)

Z2Ā−1 cm2g−1 (29)

Here Z is the charge of the ion and Ā its atomic number. Two important
properties are

• For a blackbody field the bulk of radiation has hc/λ ≥ kT , so 1 −
exp (−hc/λkT ) is close to unity.

• While κes is independent on ne, κ
ff is proportional to it (due to its 3-body

nature). It then evolves more rapidly in time.

The electron density follows (uniform sphere case)

ne = 4.4× 1014M
1/2
M⊙

E
−1/2
51 t−3

d xe(t) cm
−3 (30)

Thus, for this opacity to be relevant compared to κes in the optical/UV

t . (4× 1014/1× 1013)1/3 ∼ 4d (31)

In practice, free-free absorption plays only a secondary role for opacity for the
following reason; the density needs to be high for κff to be large, but at high
density, the temperature is also high, and λ3 is then small. Thus, in no regime
are both of these factors favorable. Free-free opacity plays however a large role
to interpret IR observations. For example, at λ & 10µm the SN can remain
optically thick for many months.

3) Photoionization

A photon can eject a bound electron in a photoionization, if Ephoton > Ebinding .
This is also called bound-free absorption. For hydrogen and hydrogenic ions

σpi
λ ≈ 10−17

(

λ

λ0

)3

cm2 (32)

where λ0 is the ionization threshold (= hc/Ebinding), which is 912 Å for the
ground state of hydrogen. Then (for H)

κpi
λ =

σpi
λ (1 − xe)

mp
= 6× 106(1− xe)

(

λ

λ0

)3

cm2g−1 (33)

Clearly, as long as even a minor amount of H is neutral (1− xe & 10−7), κpi ≫
κes, κff at wavelengths close to threshold. Some other element thresholds:
If the radiation field peaks in the hard UV (100-1500 Å), p.i. can be expected
to be important. From Wien’s displacement law, λpeak = 0.29/T cm, giving
20, 000 < T < 300, 000 for this condition.
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Element λ0

He I 504 Å
O I 912 Å
O II 353 Å
Fe I 1568 Å
Fe II 766 Å
Fe III 404 Å

Table 2: Photoionization ground state threshholds for some common atoms and
ions.

At later times, 1− xe → 1 and one might expect κpi to gain in importance.
However, then T ≪ 20, 000 K → few photons have enough energy. As for free-
free absorption, two conditions are required which are not easily met at the
same time in SNe.
Excited states. The thresholds λ0 move to longer wavelengths for p.i. from
excited states, e.g. n=2 in HI has a threshold at 3646 Å. A significant fraction
of photons have such energies for T & 5000 K. However, the number of atoms
in these excited states is typically much smaller than in the ground state.

4) Line absorption

A photon can be absorbed and cause a photoexcitation of a bound electron from
a lower state l to an upper state u. This is also called a bound-bound transition.
The cross section can be written

σbb
λ = Φ0φ(λ − λ0) (34)

where φ is the line profile (unit cm−1), which is normalized so
∫

φdλ = 1. The
strength of the line is given by the parameter

Φ0 =
hλ0

4π
B (35)

where B is the Einstein absorption coefficient (unit cm2 ster erg−1 s−1), which

can be of order 1010 for strong lines, giving Φ0 ∼ 10−22 cm3 in the optical. Ther-
mal broadening is of order Vth =

√

kT/mp ∼ 1 km s−1, or ∆λth = λ0Vth/c ∼
10−10 cm, so σ ∼ 10−12 cm2 for a strong line if we take φ ∼ 1/∆λ. Then, for a
box-like profile

κbb
λ0 =

σbb

mp
=

hλ0

4π
B

1

∆λthmp
∼ 1012 cm2g−1 (36)

A line can provide huge opacity over its profile, 1012 times electron scatter-
ing, but if the photon field covers say 104 Å, only a fraction 10−6 would interact
with the line. It is clear that to understand line opacity, we must obtain infor-
mation on the total number of lines, and have to consider radiation field with

12



wavelength dependence. We also have to think about how the Doppler shifts
between different parts of the SN enter the problem (more later).

The excited atom typically relaxes back by spontaneous photon emission

(rate A s−1, where A is the Einstein emission coefficient), either in the same
transition (“resonance scattering”) or in a set of branching ones (“fluorescence”).
It can also be collisionally deexcited by a free electron (“thermalization”), but
the chance of this is typically lower.

What happens to the energy?

Consider now Table 2, summarizing what happens to the radiative energy fol-
lowing an interaction. In many situations electron scattering and line absorption
are the dominant processes. But neither of these couple strongly to the ther-
mal energy in the electrons and atoms in the gas. Free-free and bound-free
absorption play an important tole in providing this coupling, which resets the
distribution and brings conditions close to “local equilibrium”.

Process Scattering/Fluorescence Thermalization Potential energy
Thomson 100% 0% 0%
Free-free 0% 100% 0%

Bound-free 0% Part Part
Line Mostly Minor 0%

Table 3: A summary of the fate of the radiative energy following an interaction.
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Radiative transfer

We need to consider how radiation propagates in the SN, e.g. for the dL/dm
term in the 1st law of TD, and to obtain the emergent spectra. For this we use
radiative transfer theory.

Quantities

The radiative energy travelling per unit area, per unit time, per unit Hz, per
unit solid angle, is the specific intensity. In spherical symmetry it depends on
4 variables:

Iν(r, θ, t) (erg s−1cm−2Hz−1Ster−1) (37)

wher θ is the angle relative to the radial direction. This quantity is related to
the monochromatic photon number density

φν =
1

chν
Iν (cm−3Hz−1) (38)

The mean intensity is the angle-average of Iν :

Jν =
1

4π

∫

IνdΩ (erg s−1cm−2Hz−1Ster−1) (39)

where
∫

Ω =
∫ π

θ=0

∫ 2π

φ=0
sin(θ)dθdφ, so Jν = 1

2

∫

Iν sin(θ)dθ. This is related to
the monochromatic energy density

Eν =
4π

c
Jν (erg cm−3Hz−1) (40)

The radiation flux (or first moment) is

Fν = 2π

∫

Iν cos θ sin θdθ (erg s−1cm−2Hz−1) (41)

The momentum of a photon is p = hν/c. The momentum flow is then pφνc =
hν/(c2hν)Iνc = Iν/c. If there is an angle between the flow direction and sur-
face, a cos2 term enters (one for component of the momentum, one for area
projection). Then, the specific pressure (second moment) is

pν = 2π

∫

Iν
c
cos2(θ) sin(θ)dθ (42)

If the radiation field is isotropic, Iν = Jν and

pν =
2πJν
c

[

µ3

3

]1

−1

=
4πJν
3c

=
1

3
Eν (43)

When integrating over frequency, this is the derivation of p = 1/3aT 4 used
earlier (Eq. 4).
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Transfer equation

The transfer equation is the “bookkeeping equation” for radiation field energy.
Its generic form is

dIν
ds

= ην − χνIν (44)

with interpretation “change in Iν equals addition into the beam minus absorp-
tion out of the beam”. Here ην is the emission coefficient (erg s−1 cm−3 Hz−1

ster−1) and χν is the extinction coefficient (cm−1) = κν × ρ. Here ds denotes
the so called absolute derivative, along a geodesic ray in spacetime. In general

dIν
ds

=
∂Iν
∂t

∂t

∂s
+

3
∑

i=1

∂Iν
∂xi

∂xi

∂s
+

2
∑

i=1

∂Iν
∂θi

∂θi
∂s

+
∂Iν
∂ν

∂ν

∂s
(45)

Which of these 7 components we retain depend on the complexity of the problem.
Photons travel with speed c, so dt/ds = 1/c. In a 1D, plane-parallel, non-

moving case (choose z as axis name), we have

∂Iν
∂x

= 0 (46)

∂Iν
∂y

= 0 (47)

dz

ds
= cos(θ) (48)

dθ

ds
= 0 (49)

∂Iν
∂φ

= 0 (50)

∂Iν
∂ν

= 0 (51)

(52)

So we get (denoting µ = cos(θ))

[

1

c

∂

∂t
+ µ

∂

∂z

]

Iν(z, θ, t) = ην(z, θ, t)−χνIν(z, θ, t) Plane parallel, non-moving medium

(53)
In spherical symmetry, the equation can be derived to be

[

1

c

∂

∂t
+ µ

∂

∂r
+

1− µ2

r

∂

∂µ

]

Iν(r, θ, t) = ην(r, θ, t)−χνIν(r, θ, t) Spher. symmetric, non-moving medium

(54)
If we write dτν = −χνµds, the plane-parallel case can also be written

[

1

cχν

∂

∂t
+ µ

∂

∂τν

]

Iν(r, θ, t) = Iν(r, θ, t)− Sν(r, θ, t) (55)
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where Sν is the source function

Sν =
ην
χν

(erg s−1cm−2Hz−1Ster−1) (56)

In general, ην and χν depend in Iν itself (through the influence of the radiation
field on gas state as well as scattering emissivity), which means the transfer
problem is “harder than it looks”.

Formal solution (plane parallel, time-independent case)

By formal solution, we mean a solution for when ην and χν (or equivalently
Sν) are explicitly, numerically known. Ignore for now the time-derivative term.
Then we want to solve

µ
∂Iν
∂τν

= Iν − Sν (57)

Or
∂

∂τν

[

Iνe
−τν/µ

]

= −Sνe
−τν/µ

µ
(58)

Then

Iν(τν) =

∫

Sν(τ
′

ν)e
−(τ ′

ν
−τν)/µ dτ

′
ν

µ
(59)

We will use this result to derive the solution in the diffusion limit.

Diffusion limit

In LTE (Local Thermodynamic Equilibrium), one can show that Sν = Bν (the
Planck function). Make a Taylor expansion around some point τ0:

Sν(τ) = Bν(τ0) +
∂Bν

∂τν
|τ0 (τ − τ0) + ... (60)

Then

Iν =

∫ ∞

τν

Sνe
−(τ ′

ν
−τν)/µ dτ

′
ν

µ
(61)

= [τ ′ν − τν = x] =

∫ ∞

0

Sνe
−x/µdx

µ
(62)

= Bν +
∂Bν

∂τν
|τ0µ+ ... (63)

At high optical depth (deep in the “diffusion zone”), one can show that only
first two terms are needed. The first moment (flux) becomes

Fν = 2π

∫ 1

−1

Iνµdµ

= 2π

[

Bν

∫ 1

−1

µdµ+
∂Bν

∂τν
|τ0
∫

µ2dµ

]

=
4π

3

∂Bν

∂τν
|τ0 (64)
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We can write this

Fν =
4π

3

∂Bν

∂T

∂T

∂τν
|τ0 = − 4π

3χν

∂Bν

∂T

dT

dz
(65)

The bolometric flux is

F = −4π

3

dT

dz

∫ ∞

0

1

χν

∂Bν

∂T
dν (66)

Define the Rosseland mean absorption coefficient by

χ−1

R =

∫ ∞

0

1

χν

∂Bν

∂T
dν/

∫ ∞

0

∂Bν

∂T
dν (67)

Then

F = − 4π

3χR

dB

dT

dT

dz
= − 4π

3χR

dB

dz
(68)

The use of the Rosseland coefficient give the exact right bolometric flux in a
“gray” treatment. The Rosseland opacity, in LTE, depends on composition and
temperature/density. We have obtained a conduction equation, where the flux
of something is proportional to a gradient (F = −K∇T ). The conductivity is

in our case, using B = (c/4π)aT 4,

KR =
4c

3χR
aT 3 (69)

Now we can see what to do with the energy transport term ∂L(m, t)/∂m in the
1st law of TD.

δeint(m, t)

δt
= s(m, t)− ∂L(m, t)

∂m
− p(m, t)

∂1/ρ(m, t)

∂t
(70)

Using also dm = 4πr2ρdr so d/dr = 4πr2ρd/dm, and assume equlibrum so
eint = aT 4/ρ:

∂L

∂m
=

∂

∂m

(

4πr2
4π

3χR

dB

dz

)

(71)

=
∂

∂m

(

4πr2
16π2r2ρ

3χR

c
4πaT

4

dm

)

(72)

=
16π2c

3

∂

∂m

(

r4

κR

daT 4

dm

)

(73)

This equation says that the net transport of internal energy is proportional to
the gradient in flow, which in turn is proportional to the gradient in energy
density. We therefore get a second derivative with respect to energy density for
diffusive transport. This is the general property of any heat equation
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∂φ

∂t
= ∇ · [D ×∇φ] (74)

We now also know how to compute the emergent luminosity of the SN:

Lsurf = 4πr2surf
4πc

3κR

daT 4
surf

dm
(75)

A scattering LTE gas

The diffusion limit of the 1st law of thermodynamics (with Rosseland opacity)
helps us to model the internal temperature evolution and the emergent bolo-
metric luminosity to “medium” accuracy, not having to restrict ourselves to the
adiabatic limit. The problem reduces to a single PDE in the variable T (plus
specified ρ). We can also estimate the spectrum as a blackbody with the tem-
perature at the photosphere location. Going further, and solving the transfer
equation considering more detailed physics in the outer layers, we can achieve
the goals

• Determine predictions for Lbol(t) to high accuracy.

• Determine spectra.

The scattering atmosphere

The scattering atmosphere is a simplified model where radiation is emitted from
an inner boundary - the photosphere - and then scatters (by electron scattering
and line resonance scattering) in the outer layers.

The number of photons that Thomson scatter, per unit volume, time, and
frequency is

Nν(µ) = σTne

∫ 1

−1

Iν(µ
′)g(µ′, µ)dµ′ (76)

where g is the redistribution kernel, which in principle can depend also on fre-
quency. For electron scattering it is

g =
3

4

(

1 + cos (θ′ − θ)
2
)

(77)

If we ignore this angle dependency, we get

Nν = σTne4πJν (78)

The photons are reemitted, which is bookkept in the emissivity term:

ην =
Nν

4π
= σTneJν (79)

Then Sν = ην/χν = Jν . The transfer equation then becomes

µ
∂Iν
∂τν

= Iν − Jν Pure scattering (80)
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Integrate this equation over angle. Then

∂Fν

∂τν
= 0 (81)

which tells us that (net) flux is constant with radius : we have no sources or
sinks of energy in the atmosphere. (In non-planar case this becomes L =
constant). First moment of the transfer equation:

∂pν
∂τν

= Fν − 0 (82)

As Fν is constant,
pν = Fντν + C (83)

Gray case. For gray scattering τν = τ . Integrate over frequency:

p = Fτ + C (84)

In equilibrium p = 1/3aT 4. We then get the result that

T ∝ (τ + C)
1/4

gray opacity (85)

In the so called Eddington approximation (not derived here), one can show C =

2/3, so T = 0.93Tphot (τ + 2/3)
1/4

, if we take the photosphere to be at τ = 2/3.
For a specified density profile and opacity, we then know the temperature profile
of the atmosphere; it falls from Tphot at the photosphere to 0.84Tphot at the outer
boundary (τ = 0). In simple one-temperature models one therefore often takes
T = 0.9Tphot as an average value.

Numeric approaches

Apart from the two simple cases analyzed above, and a few more, the transfer
equation has to be solved numerically by discretizing the (partial) differential
equations into difference sums. This gives a set of coupled algebraic equations,
which are solved by matrix inversion methods on the computer. E.g., let m
denote spatial grid point and n angular grid point

µ
∂Iz,µ
∂z

= Iz,µ − Sz,µ → µn
Im+1,n − Im,n

zm+1 − zm
= Im,n − Sm,n (86)

In general there are too many equations to solve simultaneously, so one imple-
ments some kind of iteration. Note that a problem with 100 radial cells, 100
frequencies, and 100 angles make 1 million equations, and 1012 matrix entries!
Far beyond any computers capability, without iteration that breaks down the
system into smaller chunks.
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Overall picture : modelling the SN

Putting all components together, a model for the SN emergent radiation re-
quires, for each zone:

• One equation involving the internal energy (some flavor of the 1st law of
TD), which always has a T dependency.

• One equation for (radiative) energy transport, for each frequency and
angle

– Diffusion limit solution

– Optically thin limit

– RT equation

• One equation for each material electronic state modelled

– LTE : Saha/Boltzmann equation ni = f(T, ρ).

– Non-LTE : A rate equation depending on Jν , T, other ni.

• A (constitutive) relation specifying how κλ depend on populations (ni)
and T , for each frequency

Note that normally we do not have to compute the hydrodynamic evolution, as
the SN reaches homology soon after explosion.

Expansion effects

We will now consider in more detail how lines contribute to opacity, and form
spectral features that we can use to diagnose the composition of the supernova.
Material from an explosion, like the galaxies in the Universe (from Big Bang)
or the layers in a supernova, move at different velocities. The frequency of a
light beam is different in each layer due to the Doppler shift:

ν′ = ν
(

1− vproj
c

)

(87)

where vproj is the projected velocity along the direction of the beam. In su-
pernovae v/c ∼ 0.01 − 0.1. This is much larger than thermal line widths:
vth/c ∼ 10−5. This means that

A A photon Doppler shifts through a whole line profile over a small part of
the ejecta (“it interacts locally”).

B A photon can come into resonance with multiple lines, at different points,
if their rest wavelength separation is < v/c.
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A) Local line interaction (The “Sobolev limit”).The limit v ≫ vth
is called the Sobolev or high-velocity gradient limit. The photon will ’traverse’
the line profile over a length LSob = vth/(dV/dr), where dV/dr is the velocity
gradient. As V = r/t in homology, dV/dr = 1/t and LSob = vtht. As vth ≪ v
this region is small compared to the size of the SN. For a top-hat line profile
(φ = 1/∆λth):

τSob = σnlLSob =
hλ0

4π
B

1

∆λth
× nl ×

∆λth

λ0

ct =
hc

4π
Bnlt (88)

One can show that this holds for any line profile. The optical depth depends
only on the local number density (nl) at the point of resonance. Ignoring changes

in ionization/excitation, nl ∝ t−3, so τSob ∝ t−2 .

B) Expansion opacity. If there is a typical velocity separation ∆Vsep

between optically thick lines around wavelength λ, the mean-free path is1 x =
∆Vsept. Write ∆Vsep = c∆λsep/λ. Then, since κ = 1/(xρ),

κline,exp
λ ≈ λ

ctρ∆λsep
(89)

Now say there is only probability 1 − exp
(

−τ iSob

)

that line i interacts. Then
refine the formula as

κline,exp
λ ≈ 1

ctρ

1

N

N
∑

i=1

λi

∆λi

(

1− e−τ i

Sob

)

(90)

where the set of N lines have be chosen over some wavelength range centred on
λ.

This is called an expansion opacity. Figure 5 shows an illustration. Note that
this is not an exact opacity like the other ones- this is because line interaction
is not a continuous process but occurs at discrete points in the Sobolev limit.
As opacity can only defined as some integral average for lines, there is always
some degree of arbitrariness how this is done (as the photon paths cannot be
defined a priori). Line opacity is together with Thomson opacity typically the
most important in SNe. In KNe it is completely dominant.

Photospheric (“P Cygni”) line formation

Consider now a moving scattering atmosphere in the Sobolev limit. We will
study what line profile arises from a single optically thick line, with the param-
eters h = Vphot/Vmax, and ǫ (the “destruction probability”) (1-ǫ for scattering).

Divide the SN into “sheets” perpendicular to the line of sight. The pro-
jected velocity in each sheet is a constant Vproj = V cosα = V Vz

V = Vz . Thus,

1This is often denoted λ, but we use x here to avoid confusion with the wavelength
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Figure 5: Expansion absorption coeffient (called opacity in the paper from which
plot was taken) for solar composition gas in LTE at T = 15, 000 K, ρ = 10−13g
and t = 15d. From Blinnikov 1998 (using Eq. 90). The x-axis is wavelength in
Å. The Thomson contribution is the “floor” value at 3e-14. In the UV (between
500-3000 Å), the line expansion opacity is a factor several times larger than the
electron scattering one.

each sheet gives line resonance at a Doppler shifted wavelength −λ0Vz/c in the
observer frame (“blueshift for approaching side”). When absorbing, the sheet
hinders flux at this wavelength to reach the observer.

Consider Fig 6. We delineate two cases.

• Case I. h > 0.71: Full photosphere is never blocked by a sheet → only
partial absorption.

• Case II. h < 0.71. Photosphere is fully blocked by sheets in B region →
complete absorption.

The ABC regions behave as following:

• A: Whole resonance sheet covers photosphere. Area of sheet grows going
inwards, giving deeper absorption.

• B-Case I: Whole resonance sheet covers part of photosphere. Sheet area
is constant (derive!), giving flat bottom in profile. Absorption depth is
(1 − h2)/h2 (derive!)

• B-Case II: (Part of) resonance sheet covers whole photosphere. Also flat
bottom, but at complete absorption.

• C. A declining fraction of photosphere is blocked, giving declining absorp-
tion.

Figure 5 shows resulting line profiles for Case I. We see that
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Figure 6: Geometry of P-Cygni line formation.
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Figure 7: Line formation for Case I (left) and Case II (right).

• Destructive line (ǫ = 1). Absorption starts at −Vmax, reaches min at
−Vphot, is flat (partial absorption) to

√
1− h2, and then moves back to-

wards zero.

• Scattering line (ǫ = 0). Reemission adds the green distribution. The
location of minimum does not change. For redshifted photons from the
receding side of the SN, some scattered photons are “blocked” by photo-
sphere. The peak is at zero shift.

For such lines, we can clearly determine both Vmax and Vphot. In addition, ǫ
can be determined from the height at x = 0. Vmax can be linked to a density
n(Vmax) by modelling. For Case II, Vphot is uniquely determined by the min-
imum. These kind of line profiles are called “P-Cygni like” after their initial
observations in LBV star “P-Cygni” showing rapid outflow speeds.
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Figure 8: An observed Type IIb SN spectrum showing P-Cygni lines (bottom
curve).

Nebular phase line formation

At later times, the photosphere disappears and we enter the nebular phase.
Now, the spectrum consists of emission lines. As powering comes from radioac-
tivity, mainly emission from the inner region where 56Ni resides. Figure 9 shows
line profiles in 6 cases, of which we comment on 3:

• Uniform sphere. For uniform conditions, each sheet now contributes flux
at wavelength−λ0Vz/c in proportion to its areaA = πp2 = π(R2

out−R2
z) ∝

1− (∆λ/∆λmax)
2
. Line profile is a parabola.

• Thin shell. A = π((p + ∆p)2 − y2) ≈ 2πp∆p. Because p =
√
r2 − z2,

∆p/∆r = 1/2
(

r2 − z2
)−1/2

2r = r/p, p∆p = r∆r = constant.The line
profile becomes a flat top.

• Gaussian. One can show that also line profile becomes a Gaussian (see
“Handbook of SNe chapter” for details).

Figure 10 shows an example of an observed nebular spectrum.
The frequency-integrated emissivity in a line is, in the Sobolev approxima-

tion

j =
1

4π
nuhνAβSob erg/s/cm3 (91)

where βSob = (1 − e−τSob)/τ is the Sobolev escape probability. Consider two
limits
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Figure 9: Nebular line profiles for 6 different cases. From Jerkstrand 2017
(Handbook of SNe).

• Optically thin line (βSob → 1). Then total luminisity depends on
jV ∝ Nu, i.e. one can get mass of ion.

• Optically thick line(βSob → 1/τSob). Then total luminosity depends on
V nu/nl = V × f(T ). Can get volume of emitting region.

Overview of observed classes, main results, open

questions

Table 4 shows an overview of the main SN classes, their fraction of all SN per
volume of space, the stars believed the be the sources of them, typical estimated
values for E, M , R0, M(56Ni) inferred from modelling, and composition that
has been diagnosed. A few comment on current ideas are given below.

Type II SNe

The hallmark of Type II SNe is H in the spectra. On a more detailed level
this class subdivides into three: IIP, IIL and IIn. This is a somewhat awkward
classification as “P” and “L” refer to light curve shape (“Plateau” and “Linear
(decline)”), but “n” refers to a spectral property (“narrow lines”). The IIP class
is much more common than the other two. It is the only SN class for which we
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Figure 10: Example of an observed nebular spectrum from a narrow-lined Type
IIP SN. From Benetti et al. 2001. These narrow-lined Type IIP SNe have
inferred energies of 1050erg, and are hypothesized to come from the lowest mass
stars in the 8-12 M⊙ range.

Type Fr. Origin R0 Mej Ekin M(56Ni) diag. comp.
II 50% RSGs 100-1000 5-30 1050−51 0.01-0.1 C,O,Na,Mg,Ne,Si,S,Ar,Fe,Ni
Ibc 25% He star . 10 1-5 1051−52 0.05-0.2 C,N,O,Na,Mg,Ca,Si,S,Fe,Ni
Ia 25% WDs <0.1 ∼ 1.4 ∼ 1051 ∼0.5 Ca,Si,S,Fe,Co,Ni

SLSN 0.01% VMS ? 5-50 1051−52 ? O,Mg,Ca,Fe*
KN ∼0.1% NS <0.1 0.01 1051 – r-process

Table 4: Overview of SNe and their inferred properties.

have direct progenitor confirmation (RSGs) from archival images. A RSG origin
is also robustly inferred from the LC shape, which from simple considerations
requires R0 of several hundred, as realized already in the 1970s.

The study of IIP SNe is therefore at the stage where we try to determine
some rather detailed properties of these RSGs, their nucleosynthesis, and ex-
plosion dynamics. As perhaps hinted by our finding of quite weak dependencies
of fundamental observational properties on E, M etc, there is quite some dis-
agreement between different models and methods. For example, some methods
indicate that stars in the 20-30 M⊙ range explode as IIP SNe, whereas other
methods indicate they do not. Figure 11 shows an example of such a model fit
to a light curve and Fig 12 to photospheric spectra. By their sheer number, IIP
SNe give perhaps the best hope still to establish relations between properties
such as progenitor mass and explosion energy.
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Figure 11: Example of a Type IIP model fit (black, solid) to an observed SN
(blue dots). From Bersten et al. 2011. Values for the 4 fit parameters are
written at top. From Bersten et al. 2011.

Type Ibc SNe

Type Ibc SNe have no H, so the envelopes of these progenitor stars must have
been lost somehow2 There are two main mechanisms for this; a wind-driven mass
loss (radiation pressure continously blows outer layer away), or gravitational
overflow to a binary companion. A key diagnostic of this should be the ejecta
mass; wind-driven mass loss is predicted to occur only for quite massive stars
(MZAMS & 30) that should have large ejecta masses (Mej & 5). However,
already 30 years ago did consideration of ∆t (which is of order 30d) indicate
that M was only a few solar masses (see also Fig. 13 for a recent example).
This seems more consistent with an origin in lower-mass stars. Evidence from
line studies point in the same direction (Fig. 14).

Another active research area is to understand what truly distinguishes Ib
(show He lines) and Ic SNe (do not show He lines). While it was initially
assumed that the lack of He in Ic SNe meant they had lost also their He layers,
later work has highlighted that He is not so easy to excite and is perhaps just
“invisible” sometimes depending on ejecta conditions. This question has not
yet been settled. Roche lobe overflow of also the He layer is much harder to
achieve than the H layer (the star shrinks when all H is lost), so if Ic SNe are
truly He free this is not easy to explain in the binary scenario. For wind mass
loss, even higher masses are needed to strip away also the He, but such masses
are not indicated from their LC widths, which are similar to those of Ib SNe.
The origin of Ic SNe remains a mystery.

2Here, we count also the “IIb” class. Although IIbs have some small amounts of H, they

have lost virtually all their H envelopes.
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Figure 12: Top: Example of a Type IIP photospheric phase spectral model
(red) compared to an observed spectrum (black) at 75d post explosion. Bottom:
Spectral dependence on envelope composition (metallicity). From Dessart et al.
2013.

A particular class, the broad-lined Ic SNe, seem to involve unusually high
energies and at least sometimes have high inferred masses, indicating a true
massive star origin. Some of them have associated Gamma-ray Bursts, and
perhaps explode by a fundamentally different (MRI) mechanism rather than
the neutrino one.

Type Ia SNe

Type Ibc and Ia SNe have quite similar light curves, although Ias tend to be
brighter. However, their spectra are quite different and in the mid 1980s it
became established that these were two fundamentally different types of explo-
sions. The higher brightness of Ias has two reasons: i) A higher 56Ni mass ii)
A lower ejecta mass, which gives a shorter diffusion time and peak at an earlier
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Figure 13: Example of a Type Ib model fit. Four different He cores (masses 3.3,
4, 5 and 8 M⊙) were exploded with energies of 0.6,1,1.2, and 2 Bethe (1051 erg).
The first three models fit the observed LC well, but the most massive one peaks
too late. Note that as diffusion time is degenerate in M3/E (Eq 9) one cannot
uniquely constrain M and E without fitting also a velocity (∝

√

E/M). the
figure on the right shows that the He8 model already has too high photospheric
velocities (using E = 2), and this model fit can therefore not be improved by
increasing E (which could otherwise move the peak earlier). From Bersten 2012.

time when the radioactive input is higher (Arnett law).
Today we know these are from white dwarfs that initiate collapse as the

mass becomes too high (above the Chandrasekhar limit) by some accretion or
merger process. By very early observations it has recently been demonstrated
that the progenitor is indeed very small, much smaller than a normal star.

As with Type IIP SNe, with the progenitors reasonably well known, current
research tries to constrain some detailed properties. The “holy grail” is to
determine whether these are single WDs that accrete matter from a normal
star, or whether its two white dwarfs merging by gravitational wave radiation
(or both). Figure 15 shows one estimate of the distribution of masses for Ia
SNe, which can put constraints on their origin.

Superluminous supernovae (SLSN)

SLSNe were discovered around 2005: very rare SNe about 100 times brighter
than normal. They come in two spectroscopic classes: IIn and Ic. The IIn
class (“n” for narrow lines) probably derives its luminosity from collisions with
unusually large amounts of circumstellar material at relatively large radii. As
Erad,tot ∼ 1051erg = Ekin, one needs efficient conversion and MCSM & MSN .
Where such large amounts of CSM would come from is unclear. Giant eruptions
are known for some H-rich stars such as LBV, but there is no known mechanism
to synchronize an eruption and core collapse (which typically need to occur
within a few years of each other).

The Ic class shows no sign of interaction: these SNe seem powered by either
very large amounts of 56Ni or energy from the central pulsar or black hole. As
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Figure 14: Nebular line model of a MZAMS = 17 M⊙ star (black) for a Type
IIb SN (red). The model overproduces lines from O, Ca, and C, which indicates
that the observed SN has less nucleosynthesis and comes from a somewhat lower
mass progenitor. Note also the asymmetry of observed line profiles compared
to the symmetric (1D) model. This means the ejecta have clear 3D structure.
From Jerkstrand et al. 2015.

we saw earlier, the 56Ni hypothesis has great difficulty to provide enough power
without increasing the ejecta mass too much - at least for some of these (the fast
evolving ones). It has therefore been proposed that the powering comes from the
central region. The energy reservoir in a rotating neutron star is E = 1052P−2

ms

erg, sufficient to release the observed 1051 erg of radiated energy if the efficiency
factor is & 10%. The energy can be released by dipole spindown (which powers
normal pulsars), which has a characteristic energy input time-scale of

τspin = 5 days P 2
msB

−2

14 (92)

Thus, is the neutron star is born spinning fast enough (1-10 ms) and has high
enough magnetic field (∼ 1014 G), this mechanism can work. However, many
question marks remain and the mechanism needs to be demonstrated by detailed
simulations, which is difficult. Another hypothesis is that the luminosity comes
from residual accretion onto a newly formed black hole. Accretion can release
up to 40% of rest mass energy for rotating black holes, which is only 10−3 solar
masses to account for 1051 erg. However, also here specific calculations for the
details are needed.

Recently, we obtained the first comprehensive view of the content of these
exotic SNe by a series of nebular phase spectra (Fig 16). They show very high
masses of oxygen, magnesium and silicon moving at very high velocities (SLSN
Ic are in fact all broad-lined Ics). This points to the origin in very massive stars,
and probably an explosion by a mechanism different than the neutrino one.
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Figure 15: An estimates for Type Ia ejecta mass distribution. From Scalzo et
al. 2014.

Study questions for exam

Lesson 1

• What is the first law of thermodynamics, and what terms does it contain?

• What is the internal energy for radiation-domainted gas in equilibrium?

• Derive what pd/dt(1/ρ) becomes assuming homology and pressure domi-
nated by radiation.

• Solve the 1st law of TD in the adiabatic limit. What time evolution do
you get for eint and T ?

• Which parameters does the light curve duration depend on? Explain
why increasing each parameter lengthens or shortens the LC. What is the
caveat for Type IIP SNe?
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Figure 16: Nebular spectra of superluminous Ic SNe. From Jerkstrand et al.
2017.

• Which parameters does the brightness depend on, assuming only a) explosive energy release?
b) radioactivity?

• What is Arnett’s law?

Lesson 2 and 3

• Derive how Tphot(t) depends on L(t) and Vphot(t). Discuss how it may
vary over a light curve evolution.

• Derive parameters (E,M ,κ) for the kilonova AT 2017gfo. (tpeak = 1d,
Lpeak = 1E42 erg, Tphot=8500 K.

• Name three types of photon-electron interactions, and describe their de-
pendence on gas state and wavelength.

• For a given opacity, estimate how long the SN is optically thick.

Lesson 4

• Describe what is meant by specific intensity, mean intensity, flux, and
pressure?

• What is the general transfer equation (what are names of terms and what
do they mean) and what is d/ds? Derive the form of the transfer equation
in a simple case.

• Derive a formal solution for a simple limiting case.

32



• How can solution to the transfer equation give us the dL/dm term in the
1st law of TD? What is the Rosseland absorption coefficient and why is
it useful?

• Derive and discuss some properties of a purely scattering atmosphere.
What are generic properties of F , p and T ?

Lesson 5

• Describe how photons interact with lines in a rapidly expanding medium
like a SN. What is the Sobolev approximation?

• Describe the basics of photospheric line formation. What parameters can
an observed line tell us?

• Describe the basics of nebular line formation. What parameters can an
observed line tell us?

• Review the main SN classes with regard to typical properties, current
theories for their origin, and outstanding questions.
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