Cosmology AS7009, 2010 Lecture 5

Outline

- Cosmological parameters
- Measuring distances
 - Luminosity distance
 - Angular-diameter distance
 - Standard candles
 - Magnitude system
- Supernova cosmology
- Dark energy

Covers chapter 7 in Ryden

Cosmological parameters I

Remember these ones?

- lacktriangle Ω_{M} : Matter
- $\bullet \Omega_R$: Radiation
- \bullet $\Omega_{\Lambda}^{\cdot \cdot}$ or $\Omega_{\rm DE}^{\cdot \cdot}$ Cosmological constant or dark energy
- ullet Ω_{tot} (or just Ω): Sum of the other Ω s
- κ : Curvature (+1,0,-1) related to Ω_{tot}
- R₀: Curvature radius of the Universe
- w_{DE}: Equation of state of dark energy
- H₀: Hubble parameter at current time (often expressed as h: H₀=100h km s⁻¹ Mpc⁻¹)
- to: Current age of the Universe

Cosmological parameters II

An endless number of subpopulations can be introduced if necessary...

- ullet Ω_{CDM} : Cold dark matter
- $\bullet \Omega_{\rm bar}$: Baryons
- Φ Ω_{stars}: Stars
- $\bullet \Omega_{\mathsf{CMBR}}$: CMBR photons
- $\bullet \Omega_{v}$: Neutrinos
- \bullet Ω_{BH} : Black holes
- $\bullet \Omega_{Robots}$: Robots (see exercises)

A few others...

- q₀: Deceleration parameter
- σ₈: Root-mean-square mass fluctuation amplitude in spheres of size 8h⁻¹ Mpc
- ullet τ : Electron-scattering optical depth
- η: Inhomogeneity parameter
- n_s: Slope of matter power spectrum
- z_{reion}. Redshift of reionization
- N_{eff}: Effective number of neutrino species

Not really covered in this course...

Deceleration parameter I

Definition:

$$q_0 = -\left(\frac{\ddot{a}a}{\dot{a}^2}\right)_{t=t_0} = -\left(\frac{\ddot{a}}{aH^2}\right)_{t=t_0}$$

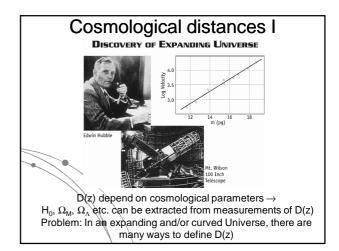
 $q_0 > 0 \implies$ Expansion slowing down (deceleration)

 $q_0 < 0 \implies$ Expansion speeding up (acceleration)

Deceleration parameter II

Acceleration equation \rightarrow

$$q_0 = \frac{1}{2} \sum_{w} \Omega_{w,0} (1 + 3w)$$


Radiation, matter & $\Lambda \rightarrow$

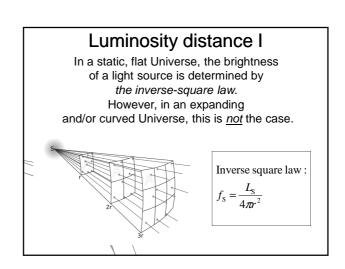
$$q_{\scriptscriptstyle 0} = \Omega_{\scriptscriptstyle \mathrm{R},0} + \frac{1}{2} \Omega_{\scriptscriptstyle \mathrm{M},0} - \Omega_{\scriptscriptstyle \Lambda,0}$$

Benchmark model:

$$\Omega_{\rm R,0}\approx 0,\,\Omega_{\rm M,0}\approx 0.3,\,\Omega_{\Lambda,0}\approx 0.7 \Longrightarrow$$

$$q_0 \approx -0.55$$
 Acceleration!

Cosmological distances II

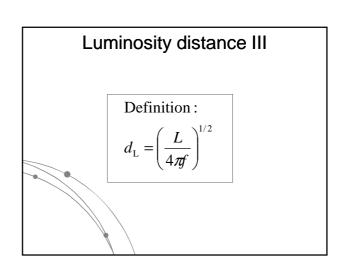

Proper distance

Remember: Length of spatial geodesic at time t if scale factor is fixed at a(t). This is sometimes referred to as "distance as measured by a rigid ruler"

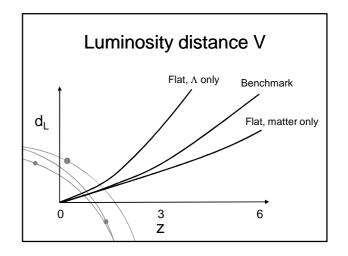
The proper distance is important for theoretical reasons, but impossible to measure in practice, since you cannot halt the expansion of space!

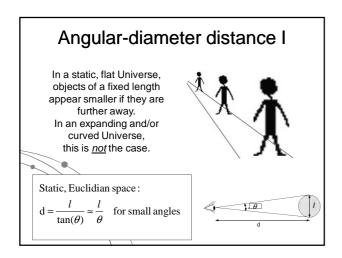
- Other distance definitions:
 - Luminosity distance
 - Angular size distance

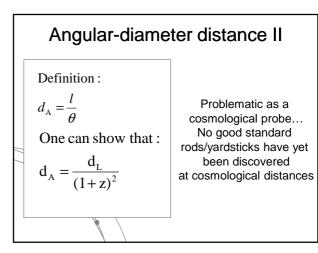
In a static Euclidian (flat) Universe, these would all be equivalent – but in our Universe, they're not!

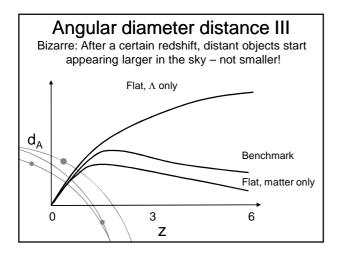

Luminosity distance II

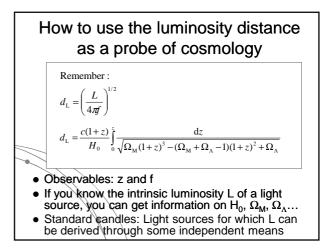
Why does the inverse square law not hold at cosmological distances?

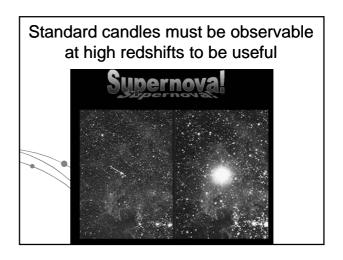

- Geometry:
 - Affects the area that photons are spread out over

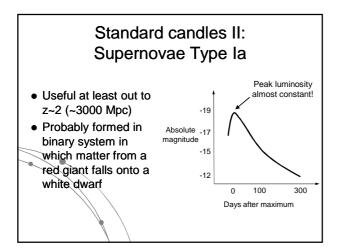


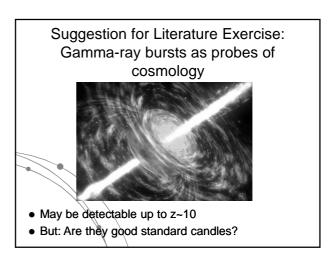

- Expansion:
 - Photons lose energy due to wavelength shift
 - Time signals stretched by redshift

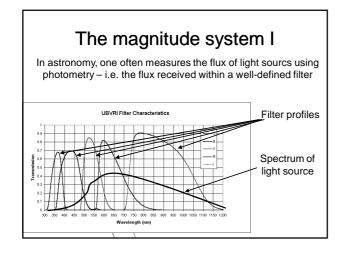


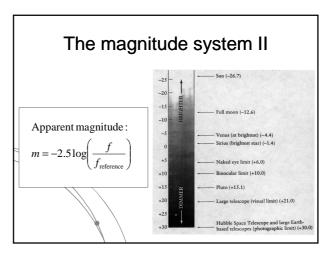

Radiation,matter and Λ : $d_{L} = \frac{c(1+z)}{H_{0}} \int_{0}^{z} \frac{dz}{\sqrt{\Omega_{M}(1+z)^{3} - (\Omega_{M} + \Omega_{\Lambda} - 1)(1+z)^{2} + \Omega_{\Lambda}}}$ Approximation in a nearly flat Universe: $d_{L} \approx \frac{c}{H_{0}} z \left(1 + \frac{1-q_{0}}{2}z\right)$ Note: $z \rightarrow 0 \Rightarrow$ $d_{L} \approx \frac{c}{H_{0}} z \quad \text{(Hubbles law)}$

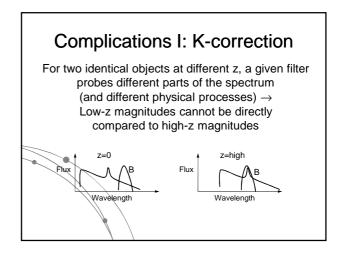


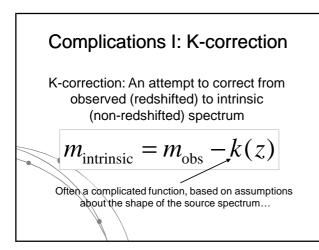


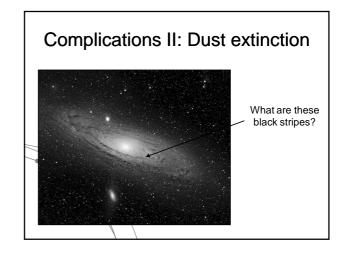


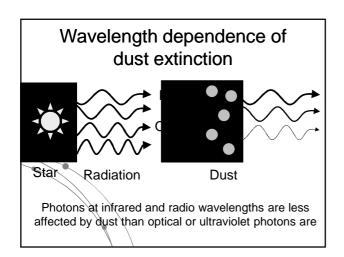


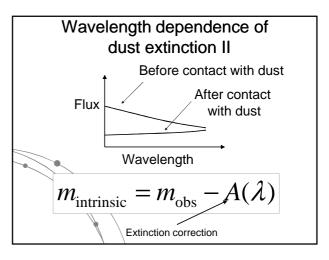

Standard candles I: Cepheid Variables • Radially pulsating stars • Period → Luminosity (Absolute Magnitude) → Distance • Applicable out to ~ 30 Mpc (slightly beyond the Virgo galaxy cluster) Luminosity (L_{sclar}) 10000 Luminosity 10000 Period (days)

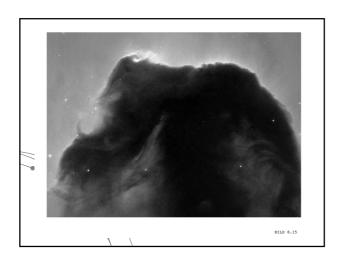


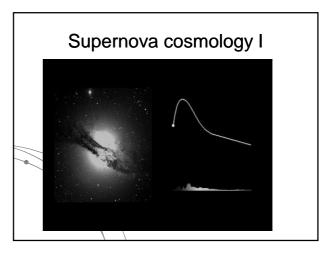


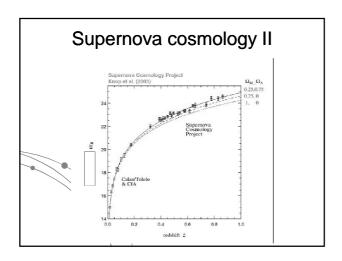


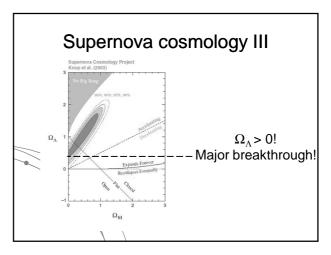


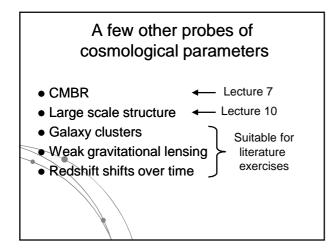

The magnitude system III Luminosities are often given as absolute magnitudes, i.e. the apparent magnitude a light source of intrinsic luminosity L would have at a fixed distance of 10 pc Absolure magnitude: $M = -2.5 \log \left(\frac{L}{L_{\text{reference}}} \right)$ $m = M + 5 \log \left(\frac{d_{\text{L}}}{10 \, \text{pc}} \right)$ $m = M + 5 \log \left(\frac{d_{\text{L}}}{1 \, \text{Mpc}} \right) + 25$

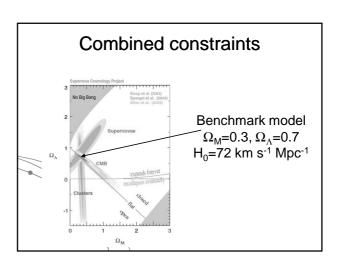


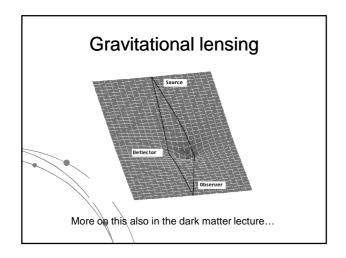


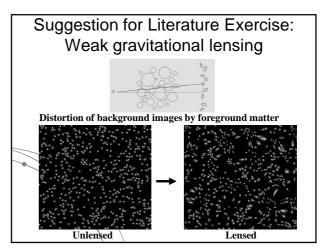








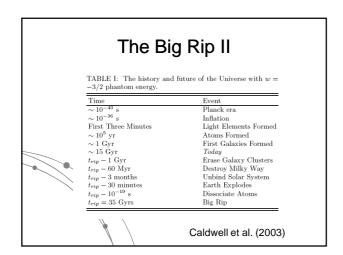




Dark energy and other alternatives

Alternatives to a cosmological constant:

- Dark energy with constant w ≠ -1
- Dark energy with w(z)
- Modification of Friedman equation, for instance due to:
 - Alternative theories of gravity
 - Additional spatial dimensions
 - Breakdown of cosmological principle
 - Non-standard models of dark matter


Suitable for literature exercises

The Big Rip I

Phantom energy with equation of state w <-1 →

Dark energy grows over time →

Alternative fate of the Universe in which currently bound structures will get disassembled in the future

