Cosmology AS7009, 2010 Lecture 8

Outline

- Origin of the elements
- Big Bang Nucleosynthesis
- Measuring Abundances
- Lingering discrepancies
- Baryon-Antibaryon asymmetry

Covers chapter 10 in Ryden + extra stuff

The Elements

Atomic nuclei:

Z = Number of protons

N = Number of neutrons

A = Nucleons = Mass number = Z + N

¹H = Normal hydrogen nucleus (proton)

²H = Deuterium (hydrogen isoptope)

⁴He = Normal Helium

X, Y, Z

- X: Mass fraction of Hydrogen (most common element in the Universe).
 Here, now: X ≈ 0.71
- Y: Mass fraction of Helium (second most common element in the Universe)
 Here, now: Y ≈ 0.27
- Z: Mass fraction of all heavier elements combined. Also known as "Metallicity".
 Here, now: Z ≈ 0.02

Abundances in Astronomy

 $[A/B] = \log_{10} \left(\frac{\text{(number of A atoms / number of B atoms)}_{\text{object}}}{\text{(number of A atoms / number of B atoms)}_{\text{sun}}} \right)$

- Common examples:
 - [Fe/H], [O/H] These two are often carelessly referred to as 'metallicities'
- [Fe/H] = -1 means that the object you're looking at only has 10% Iron (relative to hydrogen) compared to the Sun.

The Light Elements

Created during Big Bang Nucleosynthesis, roughly in the first three minutes after the Big Bang:

- ²H (Deuterium, D), ³H (Tritium)
- ³He, ⁴He
- **e6**Li, ⁷Li
- 7Be, 8Be (Unstable, decays back into Li)

Note: BBNS required to explain abundances of ⁴He and Deuterium!

- Essentially all elements with A>7 are created through
 - Stellar nucleosynthesis
 - Supernova nucleosynthesis

Fusion: $H \rightarrow He$ \rightarrow Heavier elements

Cosmic Ray Spallation

- Nucleosynthesis due to high-energy impacts of cosmic rays
- Can form ³He + certain isotopes of Li, Be, B, Al, C, Cl, I and Ne

Important BBNS Reactions I: Proton-neutron freezeout

Consider the Universe at $t \approx 0.1 \text{ s...}$

Pair production:

 $\gamma + \gamma \Leftrightarrow e^- + e^+$

n and p are held in equlibrium with each other:

 $n+v_{\circ} \Leftrightarrow p+e^{-1}$

 $n + e^+ \Leftrightarrow p + \overline{V}_e$

Neutrinos freeze out of these reactions at t ~1 s \to Neutron-to-proton ratio frozen at $n_n/n_p{\approx}~0.2$

Then follows neutron decay:

 $n \Rightarrow p + e^- + \overline{\nu}$

Important BBNS Reactions II: Deuterium and Helium synthesis

Consider the Universe at t ≈ 2—300 s...

$$p + n \Leftrightarrow d + \gamma$$

The rightward direction starts to dominates once the photon temperature has dropped below the 2.22 MeV binding energy of Deuterium. Serious production of D does not start until t $\approx 300\ s.$

Once we have Deuterium, several routes allow the formation of Helium:

$$\begin{array}{lll} d+n \longrightarrow H^3 + \gamma & d+d \longrightarrow He^3 + n & d+d \longrightarrow He^4 + \gamma \\ H^3 + p \longrightarrow He^4 + \gamma & d+d \longrightarrow H^3 + p \\ d+p \longrightarrow He^3 + \gamma & H^3 + d \longrightarrow He^4 + n \\ He^3 + n \longrightarrow He^4 + \gamma & He^3 + d \longrightarrow He^4 + p \end{array}$$

The Beryllium Bottleneck

 No stable nuclei with A=8 → Prevents formation of heavier elements during BBNS

Even though you can form:

 4 He+ 4 He \Rightarrow 8 Be

⁸Be will decay back into He after just 3×10⁻¹⁶s

Yet we know that the Universe has somehow managed to make heavier elements...

Suggestion for Literature Exercise: The Anthropic Principle in Cosmology

• Anthropic Reasoning: "If things were different, we wouldn't be here to observe them!"

• Has been advocated to crack tough nuts like:
• The "why now?" problem Why is $\rho_M \sim \rho_\Lambda$ at the current epoch?

Primordial Abundances To test BBNS, one needs to measure the primordial abundances of the light elements, i.e. measure the abundances in environments unaffected by chemical evolution Helium: Low-metallicity HII regions Deuterium: Quasar absorption lines Lithium: Low-metallicity stars

BBNS - A Big Bang Success Story

- Big Bang explains primordial abundances of the light elements
- The abundances of the light elements agree with predictions over 9 orders of magntiude!
- The resulting Ω_b is in accord with the result from other methods

This is how the success story is usually told – but there may be more to this than meets the eye...

$\begin{array}{ccc} \text{Lingering discrepancies} \\ \text{Tracer} & \Omega_{\text{b}} \\ \text{Deuterium} & 0.038 \pm 0.005 \\ \text{Helium} & 0.021 \pm 0.008 \\ \text{Lithium} & 0.028 \pm 0.005 \\ \text{CMBR} & 0.046 \pm 0.007 \\ \text{McGaugh (2008)} \\ \\ \text{Something's wrong here...} \end{array}$

Suggestion for Literature Exercise: The Lithium Problem • Why does Lithium-7 not agree with BBNS predictions? • Exotic particles decayed around t_{BBNS}? • Stars used as probes destroy lithium through mixing?

The Baryon-Antibaryon Asymmetry Why is there so little antimatter? • At the time of BBNS, $n_{bar} >> n_{antibar}$ • When the energy of the Universe was higher than 150 MeV: Quark soup Pair production and annihilation $q + \overline{q} \Leftrightarrow \gamma + \gamma$ At lower temperatures: $q + \overline{q} \Rightarrow \gamma + \gamma$

The Baryon-Antibaryon Asymmetry II

• Slight overweight of quarks compared to antiquarks:

 $n_{\rm q} > n_{\rm \bar{q}}$ by 3 parts in a billion

This leads to current baryon-antibaryon asymmetry and large photon-to-baryon ratio at BBNS

Problem: Mechanism behind quark-antiquark asymmetry poorly understood...