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ABSTRACT
The cold dark matter (CDM) scenario generically predicts the existence of triaxial dark matter
haloes which contain notable amounts of substructure. However, analytical halo models with
smooth, spherically symmetric density profiles are routinely adopted in the modelling of light
propagation effects through such objects. In this paper, weaddress the biases introduced by
this procedure by comparing the surface mass densities of actual N-body haloes against the
widely used analytical model suggested by Navarro, Frenk and White (1996) (NFW). We
conduct our analysis in the redshift range of 0.0 - 1.5.

In cluster sized haloes, we find that triaxiality can cause scatter in the surface mass density
of the haloes up toσ+ = +60% andσ

−
= −70%, where the 1-σ limits are relative to the

analytical NFW model given value. Subhaloes can increase this scatter toσ+ = +70% and
σ
−

= −80%. In galaxy sized haloes, the triaxial scatter can be as high as σ+ = +80% and
σ
−

= −70%, and with subhaloes the values can change toσ+ = +40% andσ
−

= −80%.
We present an analytical model for the surface mass density scatter as a function of dis-

tance to the halo centre, halo redshift and halo mass. The analytical description enables one
to investigate the reliability of results obtained with simplified halo models. Additionally, it
provides the means to add simulated surface density scatterto analytical density profiles. As
an example, we discuss the impact of our results on the calculation of microlensing optical
depths for MACHOs in CDM haloes.

Key words: Dark matter, Methods: N-body simulations, Gravitational lensing

1 INTRODUCTION

The cold dark matter model, in which the non-baryonic part of
the dark matter is assumed to consist of particles that were non-
relativistic already at the time of decoupling, and that interact pre-
dominantly through gravity, has been very successful in explain-
ing the formation of large-scale structures in the Universe(see e.g.
Primack 2003, for a review). In this scenario, both galaxiesand
galaxy clusters are hosted by CDM haloes, which formed hierar-
chically through mergers of smaller subunits.

Even though N-body simulations generically predict CDM
haloes to be triaxial (e.g. Jing & Suto 2002) with substantial
amounts of substructures left over from the merging process(e.g.
Moore et al. 1999), simplified halo models are often adopted in
the modelling of light propagation through such objects. The most
common approach is to treat dark matter haloes as spherical ob-
jects with smooth density profiles, usually either of the NFW

(Navarro, Frenk & White 1996) form, some generalization thereof
(Zhao 1996), or that of a cored or singular isothermal sphere.

The light emitted from high-redshift objects such as quasars,
supernovae, gamma-ray bursts, galaxies and galaxy clusters will
typically have to pass through many dark matter haloes before
reaching an observer on Earth. Several investigations haveal-
ready indicated that smooth and/or spherical halo models may
lead to incorrect results when treating the gravitational lens-
ing effects associated with such foreground mass condensations
(e.g Bartelmann & Weiss 1994; Dalal, Holder & Hennawi 2004;
Oguri & Keeton 2004; Hennawi et al. 2007)

More realistic features like triaxiality and substructures can
be included in gravitational lens calculations either by employ-
ing N-body simulations directly (e.g. Bartelmann & Weiss 1994;
Seljak & Holz 1999; Holopainen et al. 2006) or by using ana-
lytical expressions for the halo shapes (e.g. Kochanek 1996;
Golse & Kneib 2002; Evans & Hunter 2002; Chae 2003) and sub-
halo properties (e.g. Oguri 2005; Zackrisson & Riehm 2007).
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2 J. Holopainen et al.

While N-body simulations often represent the safest choice, the
approach is computationally demanding and does not always al-
low one to identify the features of the mass distribution responsible
for a specific lensing effect. Methods which bring simple, analyt-
ical halo models into contact with the full phenomenology ofthe
N-body simulations are therefore highly desirable.

In this paper, we focus on the projected mass density of
CDM haloes as a function of distance from the halo centre. There
are several situations in gravitational lensing when realistic es-
timates of the surface mass density (i.e. convergence) along a
given line of sight through a dark halo may be important. Ex-
amples include the calculation of image separations in strong
lensing by subhaloes located in the external potential of its host
halo (Oguri 2005), attempts to correct the luminosities of super-
novae type Ia for the magnification by foreground haloes (e.g.
Gunnarsson 2004) and estimates of the distribution of microlensing
optical depths for high-redshift MACHOs (e.g. Wyithe & Turner
2002; Zackrisson & Riehm 2007). Other applications includethe
assessments of light propagation effects in models with non-
zero coupling betweeen dark matter particles and photons (e.g.
Profumo & Sigurdson 2007).

Here, we use high-resolution, dissipationless N-body simula-
tions of CDM haloes to investigate the errors in surface massden-
sity introduced by treating these objects as spherical withsmooth
density profiles of the NFW type. Simple relations for the surface
mass density error as a function of halo redshift and distance to the
halo centre are presented, making it easy to investigate thereliabli-
tiy of results obtained with simplified halo models.

On a related note, Knebe & Wiessner (2006) recently inves-
tigated the error introduced by spherically averaging an elliptical
mass distribution. They found that for axis ratios typical for cosmo-
logical dark matter haloes, the variance in the local density can be
as large as 50% in the outer parts. The current paper examinesthe
problem of halo triaxiality from a slightly different pointof view.

The N-body simulations used are described in Section 2. In
Section 3, we describe the methods for extracting the halo sample.
In Section 4, we compare the CDM surface mass densities obtained
along random sightlines through the N-body haloes to the corre-
sponding results obtained from smooth and spherical NFW models
fitted to the same haloes. Section 5 presents a set of simple relations
for the surface mass density errors introduced by this procedure as
a function of distance to the halo centre and halo redshift. Section 6
discusses how these relations may be used in the context of optical
depth estimates for MACHO microlensing. A number of caveats
are discussed in Section 7. Section 8 summarizes our findings.

2 N-BODY SIMULATIONS

2.1 The 64h−1Mpc simulations

For studying cluster sized haloes, we utilize a suite offour high-
resolution N-body simulations. The simulations were carried out
using the publicly available adaptive mesh refinement codeMLAPM
(Knebe, Green & Binney 2001), focusing on the formation and
evolution of dark matter galaxy clusters containing of order one
million particles, with mass resolution1.6 × 108 h−1 M⊙ and
spatial force resolution∼2h−1 kpc. They are so-called “zoom” or
multimass simulations in which we first created a set of four inde-
pendent initial conditions at redshiftz = 45 in a standardΛCDM
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Figure 1. The masses and redshifts of the haloes used in our analysis. The
total number of haloes is 336. See text for details.

cosmology (Ω0 = 0.3, Ωλ = 0.7, Ωb = 0.04, h = 0.7, σ8 = 0.9).
5123 particles were placed in a box of side length 64h−1 Mpc giv-
ing a mass resolution ofmp = 1.6 × 108h−1 M⊙. For each of
these initial conditions we iteratively collapsed eight adjacent par-
ticles to a single particle, reducing our simulation to 1283 particles.
These lower mass resolution initial conditions were then evolved
until z = 0. At z = 0, eight clusters from different regions of our
simulations were selected: 4 halos from box #1, one from box #2,
one from box #3 and 2 from box #4. The masses of these haloes
are in the range 1–3×1014h−1 M⊙ and triaxiality parameters vary
from 0.1 to 0.9. Then, as described by Tormen (1997), for each
cluster the particles within five times the virial radius were tracked
back to their Lagrangian positions at the initial redshift (z = 45).
Those particles were then regenerated to their original mass resolu-
tion and positions, with the next layer of surrounding largeparticles
regenerated only to one level (i.e. 8 times the original massresolu-
tion), and the remaining particles were left 64 times more massive
than the particles resident with the host cluster. This conservative
criterion was selected in order to minimise contamination of the
final high-resolution haloes with massive particles.

A more elaborate description of this data set and a de-
tailed investigation of the sense of rotation of the satellites and
the properties of the tidally induced debris field of disrupt-
ing satellites can be found elsewhere (Warnick & Knebe 2006;
Warnick, Knebe & Power 2007a,b).

2.2 The 10h−1Mpc and 40h−1Mpc simulations

For studying galaxy sized halos (M ∼ 1012M⊙) and for acquiring
better statistics on the larger haloes, we ran two additional simula-
tions with smaller box sizes. The same simulation codeMLAPM as
in the 64h−1Mpc simulations was used, but the cosmological con-
stants were slightly different:Ω0 = 0.27, Ωb = 0.044 andΩλ =
0.73. These two simulations are standard cosmological simulations
where all the particles have the same mass:4.47 × 106h−1 M⊙

and2.86 × 108h−1 M⊙ for 10 h−1Mpc and 40h−1Mpc simula-
tions, respectively. Spatial force resolutions were 0.46h−1kpc and
1.8h−1kpc. Both simulations were followed untilz = 0 and halos
were identified at different redshifts. The 10h−1Mpc simulation
was followed fromz = 71.52 and the 40h−1Mpc simulation from
z = 47.96.

One may argue that the large scale modes, ignored in these
relatively small volume simulations, can cause spurious errors in
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the results. Especially in the smallest simulation volume,the long
wavelength perturbations will not be present. However, thedistri-
butions of mass concentrations remain the same when compared
to larger volume simulations. Also, in the 10h−1Mpc box, we re-
strict our analysis to intermediate mass halos and their subhalos.
We believe that the simulations are reliable for our purposes and in
agreement with simulations covering larger volumes.

3 CDM HALOES

3.1 Finding and truncating haloes

Finding and truncating dark matter haloes within cosmological
simulations is an interesting and challenging task. Many authors
have addressed this problem successfully by developing sophisti-
cated algorithms which can locate haloes by a variety of techniques
(e.g. Davis et al. 1985; Frenk et al. 1988; Bertschinger & Gelb
1991; Suto, Cen & Ostriker 1992; Weinberg, Hernquist & Katz
1997; Klypin & Holtzman 1997).

Our analysis examines the cores as well as the outskirts of the
haloes without the luxury of being allowed to overlook the exact
properties of the low density regions. We need to study all parts
or the halo density profile in three dimensions, and we need toget
rid of the background particles at all radii as well as possible, espe-
cially near the virial radius. To achieve this, we use a highly capable
halo finder which can determine the parent potentials of individual
particles and “clean” host haloes from their subhaloes.

We find and truncate our haloes and subhaloes using the
MLAPM Halo Finder (MHF) (Gill et al. 2004). MHF uses the
adaptive grids ofMLAPM to locate haloes within the simulation.
MLAPM’s adaptive refinement meshes follow the density distribu-
tion by construction. The grid structure naturally “surrounds” the
haloes, as the haloes are simply manifestations of over-densities in
the mass distribution of the simulation box. The grids ofMLAPM are
adaptive, and it constructs a series of embedded grids, the higher
refinement grids being subsets of grids on lower refinement levels.
MHF takes this hierarchy of nested isolated grids and constructs
a “grid tree”. Within that tree, each branch represents a halo, thus
identifying haloes, subhaloes, subsubhaloes and so on.

While a branch of the tree identifies the majority of particles
associated with a halo, the surrounding region is checked for addi-
tional particles if the halo is embedded within another halo(i.e., it is
a subhalo). To gather additional particles, a larger collection radius
is defined, and all the particles within this radius are assigned to the
halo. In this paper, the collection radius has been defined ashalf the
distance between the current halo and the next most massive halo.

The gravitationally unbound particles are then removed from
the haloes in an iterative fashion. If a particle is not bound, it is
assigned to the subhalo’s host or the background as appropriate.
This, however, does not guarantee that each particle is uniquely
assigned to a halo. It is possible for a particle to be shared by two
or more halo potentials by these criteria.

Using this set of particles, the canonical properties of the
haloes are calculated. For example the virial radius is found by
stepping out in (logarithmically spaced) radial bins untilthe density
reachesρhalo(rvir) = ∆vir(z)ρb(z), whereρb is the cosmic matter
density. Particles outside this radius are removed. If thisdensity is
not reached, then we consider the furthest bound particle from the
centre of the halo as the radius.

Table 1. Summary of the number of haloes and the particle counts in our
sample. First column gives the simulation box size andNhaloes refers to
the number of haloes the sample contains per redshift.Nmin

part refers to the
number of particles withinrvir of the least massive halo andNmax

part to the
number of particles withinrvir of the most massive halo, in each box.

box Nhaloes Nmin
part Nmax

part Nmin
part Nmax

part

h−1Mpc z = 1.5 z = 1.5 z = 0 z = 0

10 10 75,000 320,000 220,000 1,000,000
40 10 36,000 93,000 100,000 760,000
64 7 85,000 380,000 600,000 1,600,000

3.2 The halo sample

Typically, MHF finds thousands of haloes within a simulationbox,
but the number of haloes which have sufficient mass resolution for
our purposes is unfortunately quite low. When choosing the halo
sample, we have to balance between particle resolution and the
number of haloes. After looking at the consistency of the NFW
fit and the halo mass profiles, we decided to include the ten most
massive haloes from the 10h−1Mpc and 40h−1Mpc simulations.
This choice translates to a minimum resolution of 36,000 particles
in the smallest halo in our sample. Note that our particle counts are
given without subhaloes, which normally contribute about10− 20
% of the host’s mass.

Nearly all haloes in the sample contain more than 100,000 par-
ticles at the maximum redshift,zmax = 1.5. The only exception is
the 40h−1Mpc box, in which the number of particles contained by
the tenth most massive halo is only 36,000. However, this is com-
pensated by the large particle counts in the multimass simulations,
which contain haloes in the same mass range. The particle counts
of the halo sample is shown in Table 1. Note that the largest number
of particles within a halo is always found atz = 0 and the smallest
number of particles atz = 1.5.

Each of the eight 64h−1Mpc multimass simulations contains
only one high resolution cluster halo region. When the virial mass
accretion histories were examined, we found that the youngest of
the eight clusters is composed of three smaller haloes with compa-
rable masses. In this case, it was impossible for MHF to separate
the three interacting haloes from each other, and therefore, we were
left with seven well defined haloes per redshift from the multimass
simulations. Excluding the “triple-cluster” does not introduce any
selection bias since this type of specific merger occurs rarely.

The number of redshifts used per simulation box can be seen
in Fig. 1. The redshift counts are 13, 15 and 8 for the 10h−1Mpc,
40h−1Mpc and 64h−1Mpc boxes, respectively. In total, the num-
ber of haloes in the sample is 130 + 150 + 56 = 336.

Our halo sample is divided into two mass classes with a mass
gap atM ∼ 1013 M⊙h−1 at z = 0 (see Fig. 1). We refer to the
more massive class as thecluster sizedhaloes and to the lower mass
class as thegalaxy sizedhaloes. We would need another cosmolog-
ical simulation with a comoving box size of∼ 25 h−1Mpc to fill
the mass gap. The 40h−1Mpc simulation does contain haloes with
masses at the range of the gap, but unfortunately the resolutions of
these haloes are insufficient for our purposes.

c© 2007 RAS, MNRAS000, 1–9
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3.3 Analytical haloes

Once we have found, extracted and chosen our N-body haloes, we
want to construct their analytical counterparts. We have chosen to
use the NFW density profile so that our fit procedure can be com-
pared to earlier work and reproduced easily. The fit equationis

ρ(r) =
a0

r
a1

(1 + r
a1

)2
, (1)

wherea0 anda1 are our fit parameters. We measure the number
density of the particles in a halo at a certain radius by dividing
the particles in logarithmically spaced radial bins (shells) and cal-
culating the particles within these bins. Then, by the fit procedure
(Levenberg-Marquardt algorithm), we find thea0 and a1 values
which minimize

χ2 =
X

i

„

ρ(ri) − ρs(ri)

σρ(ri)

«2

, (2)

whereρs(ri) is the measured number density of theith shell and
ri is the midpoint radius of that shell. The estimated “measurement
error” in the number of particles within a shell is assumed tobe
Poissonian:σNi

=
√

Ni. This makes the estimated “measurement
error” in the number density to beσρ(ri) = Ni/ρ2

s (ri). The choice
of weighting the fit withσρ(ri)

2 tends to provide the inner core less
weight than to the outer regions. This is a deliberate choicebecause
our analysis is affected by the full structure of the halo andonly in
few rare cases dominated by the center.

4 MEASURING THE SURFACE MASS DENSITY

4.1 Sightlines

After we have assigned the particles to a certain halo, we smooth
the mass distribution by treating the particles as triangular-shaped
clouds (Hockney & Eastwood 1981). This approach allows us
to measure the surface mass densities of the haloes using one-
dimensional sightlines. If the particles were treated as point masses,
the surface mass density would have to be measured using tubes of
finite radius, which would lead to an average measurement within
a tube. To avoid the averaging process, each particle is assigned a
surface mass density

Σp(r) =

(

Σ0(1 − r

a
) =

3Mp

πa3
(1 − r

a
) r < a

0 r > a
(3)

wherer is the impact parameter between a sightline and a particle
andMp is the mass of the particle.a is the size of the adaptive grid
cell where the particle is found, anda is used in our analysis as the
effective radius of the particle. The cell size depends fromthe local
particle density and is determined by the cosmological simulation
grid constructing process (MHF andMLAPM can both construct the
same adaptive grid tree). The cell sizes in the simulations can range
from 250 h−1kpc to0.150 h−1kpc, and the smallest cells are au-
tomatically located in the dense cores of haloes and subhaloes.

To sample the surface mass density of an MHF extracted halo,
we pierce it with 10,000 randomly oriented sightlines with impact
parameters chosen from a uniform random distribution in therange
rimp ∈ (0, rvir). We then calculate the surface mass density for
each sightlineΣSL(rimp) by summing the surface mass densities
of the particles for whichr < a.

The proper truncation of the smooth mass distribution at the
virial radius is slightly complicated. Some of the particles can ex-
tend a portion of their mass beyond the virial radius. For these

particles, only the mass insidervir is taken into account. Further-
more, the extended particles introduce an additional requirement
for our halo finder – it needs to be able to find particles which
belong to a given halo potential (based on the particle velocity)
out to ∼ 1.5rvir. This is because most of the particles between
1.0 < rvir < 1.5 extend their effective radii (defined in Eq. 3)
into the region inside the virial radius and contribute massto our
sightlines.

4.2 Truncated density profile

We want to analyse how the surface mass density of an N-body halo
behaves compared to an analytical model. To calculate the analyti-
cal value, we use a truncated version of the projected NFW density
profile, which gives us the predicted surface mass density asa func-
tion of the impact parameter (rimp) and the virial radius of a halo
(rvir). Truncation is needed because our haloes have a limited size,
unlike the NFW haloes, which extend to infinity. The fit parameters
a0 anda1 are also used in the truncated model – after they have
been determined by fitting Eq. 1 to the respective halo.

We derive the following form for the truncated NFW surface
mass density

ΣNFW(x, c) =

Z z1

z0

ρ(z)dz = 2a0a1F (x, c), (4)

where

F (x, c) =

8

>

>

>

>

<

>

>

>

>

:

1
x2−1

 √
c2−x2

1+c
− cosh−1( c+x

2

(1+c)x
)√

1−x2

!

x < 1

1
x2−1

 √
c2−x2

1+c
− cos−1( c+x

2

(1+c)x
)√

x2−1

!

x > 1.

(5)

Herex = rimp/a1 andc = rtrunc/a1. Note thatc is analogous
to the NFW concentration parametercvir when the truncation ra-
dius is equal to the virial radiusrvir. When |x − 1| < 0.1, we
have to interpolate (linearly) between both forms of the function,
Fx>1(1.1x, c) andFx<1(0.9x, c) for numerical reasons.

For the untruncated version of Eq. 4, in whichc → ∞, see e.g.
Golse & Kneib (2002). The untruncated model extends asymptot-
ically to infinity and does not have the turnover seen for example
in Figure 2 between800kpc < r < 1300kpc. The surface mass
density has also been derived by Bartelmann (1996).

5 A SIMPLE CORRECTION SCHEME FOR SMOOTH
AND SPHERICAL DARK MATTER HALOES

5.1 Fitting the scatter

Figure 2 shows the surface mass density scatter of a typical cluster,
with its subhaloes removed, and the scatter is seen to followthe
NFW profile quite well. For some haloes, there are some strong
deviations within the inner 5 % of the virial radius, and for the
majority, a weak, continuous offset trend near the virial radius is
seen. The problems of the NFW profile in the core is a known issue
(Navarro et al. 2004). The scatter in surface mass density around
the mean is roughly log-gaussian, as will be seen.

The scatter seen in Figure 2 is a consequence of the fact that
the haloes are not spherically symmetric – if they were, all the
measured points would land on the NFW profile curve. Subhaloes,
when not excluded as in Figure 2, cause a small number of sight-
lines to produce even higher surface mass density values than the
ones seen in Figure 2.

c© 2007 RAS, MNRAS000, 1–9
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Figure 2. This figure shows how the surface mass density scatters due to
triaxiality in most of the haloes in our halo sample. Here thevalues are mea-
sured from a cluster sized halo with 10,000 randomly oriented sightlines,
withoutsubhaloes. The dashed line shows the truncated NFW fit profile, and
the two vertical lines mark the borders of a radial bin. TheΣSL-distribution
of this bin is fitted with a log-normal function in Fig. 3.
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Figure 3. A typical log-normal fit of the scatter. The sightlines have been
taken from the halo shown in Fig. 2, from an impact radius range of0.7 <
rimp/rvir < 0.8. The surface mass densities are divided in 30 bins, of
which only 18 bins containing the majority of the sightlinesare visible here.
The log-normal distribution is fitted to the frequency of thesightlines in
these 30 bins. All fits in our analysis are done accordingly.

For comparing the surface mass densities on sightlines from
different haloes (with different virial radii and masses),the impact
parameter is transformed to a unitless variableximp = rimp/rvir.

The amount by which eachΣSL(ximp) deviates from the
NFW profile measures how much the shape of the halo deviates
from a spherically symmetric analytical model at a specific sight-
line. This is why the surface mass density is transformed relative to
the NFW profile of each halo as follows:

S(ximp) =
ΣSL(ximp)

ΣNFW(ximpcvir, cvir)
, (6)

wherecvir = rvir/a1 andΣNFW(x, c) is the function in Eq. 4. As
a result of all this, the impact parameter has been scaled to the units
of the virial radius and the measured surface mass density tothe
units of the NFW value.

We divide the measurements in 10 radial bins (one example

bin is shown by the vertical lines in Fig. 2). The width of eachbin
is ∆ximp = 0.1 and each bin contains 1000 measurements. These
radial bins are further divided in 30 bins in surface density, which
typically contain a maximum of∼ 200 measurements in a single
bin (see Fig. 3).

Once the measurements points are binned, we fit log-normal
distributions to theS(ximp) distribution, for each radial bin, indi-
vidually for each halo. The fit function is

f(S; µ, σ) =
e−(ln(S)−µ)2/(2σ2)

Sσ
√

2π
. (7)

Repeating the fit procedure for all haloes in the sample allows
us to derive the best fit parameters as a function of impact parame-
ter and the halo redshift:σ(ximp, z) andµ(ximp, z). Essentially,σ
measures the width of the scatter andµ measures the mean devia-
tion from the NFW fit profile in ln(S)-space. Because each halo is
divided in 10 impact parameter bins, the total number of log-normal
fits (and both fit parameters) is336 × 10 = 3360.

5.2 Finding dependencies toz and ximp in the log-normal
parameters

Finally, we searched for trends in theσ(ximp, z, Mvir) and
µ(ximp, z, Mvir) data for constructing an analytical description of
our measurements. As the analysis progressed, we quickly became
aware of the fact that the log-normal parameters do not correlate
with the virial mass of the halo as strongly as with the other two
variables. Thus, we reduced our analytical description to functions
σ(ximp, z) andµ(ximp, z) for the galaxy and cluster sized haloes
separately. We also give the analytical description with and with-
out subhaloes, for both mass classes, which then makes the number
of our final analytical descriptions four. All four descriptions are
expressed by changing parameters within the following function
forms:

σ(ximp, z) = P0(ximp) + zP1(ximp), (8)

µ(ximp, z) = Q0(ximp) + zQ1(ximp), (9)

where bothPi(ximp) andQi(ximp) are second order polynomials:

Pi(ximp) = pi2x
2
imp + pi1ximp + pi0, (10)

Qi(ximp) = qi2x
2
imp + qi1ximp + qi0. (11)

Examples of the analytical descriptions ofσ(ximp, z) and
µ(ximp, z) with the actual data can be seen in Figures 4 and 5.
The constants for all polynomials are given in Tables 2 and 3.Be-
fore the analytical versions ofσ(ximp, z) andµ(ximp, z) are fitted
to the log-normal parameters, the data are averaged over bins with
a width of ∆z ∼ 0.2 to reduce noise. Also, we had to drop the
inner 5 % of the data (ximp < 0.05) because within this region, the
NFW fit fails to follow the data correctly in a significant number
of cases. This is because of our choice of fit weighting (see Section
3.3).

Equations 8 and 9 quantify the distribution of the surface mass
density of a generalized galaxy or cluster sized CDM halo at any
impact radius and redshift within the ranges we have used. Because
of the log-normal distribution, the geometric mean and standard
deviations at a givenximp andz values inS(ximp, z)-space are

µS(ximp, z) = eµ(ximp,z) (12)

σS(ximp, z) = eσ(ximp,z), (13)

and the upper and lower 1-σ limits in S(ximp, z)-space are

c© 2007 RAS, MNRAS000, 1–9
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Table 2. The constants for polynomialsP0 andP1, which make up the
analytical description forσ(ximp, z) (Eq. 8). The samples are coded as fol-
lows. G-ns: Galaxy sized haloes, no subhaloes. G-ws: Galaxysized haloes,
with subhaloes. C-ns: Cluster sized haloes, no subhaloes. C-ws: Cluster
sized haloes, with subhaloes.

Sample p00 p01 p02

p10 p11 p22

G-ns 0.217 −0.0692 0.305
0.0514 −0.0889 0.289

G-ws 0.211 −0.0659 0.380
0.0424 0.199 −0.00372

C-ns 0.272 0.0355 0.299
0.0386 −0.121 0.269

C-ws 0.287 0.0861 0.266
0.0260 −0.00533 0.247

Table 3. The constants for polynomialsQ0 andQ1, which make up the
analytical description forµ(ximp, z) (Eq. 9). The samples are coded as in
Table 2.

Sample q00 q01 q02

q10 q11 q22

G-ns −0.0322 0.286 −0.526
−0.0739 0.0406 0.0376

G-ws −0.0612 0.254 −0.530
−0.060 0.0365 −0.135

C-ns −0.0333 0.148 −0.433
−0.0746 −0.00968 0.0296

C-ws −0.0739 0.218 −0.593
−0.0198 −0.144 0.122

σ+
S (ximp, z) = e(µ(ximp,z)+σ(ximp,z)) (14)

σ−

S (ximp, z) = e(µ(ximp,z)−σ(ximp,z)). (15)

We strongly recommend that the analytical function form
which includessubhaloes is used with care. This is because sub-
haloes can have unwanted effects to the log-normal fitting proce-
dure. The preferred way of using the derived analytical description
is to use the version which does not include subhaloes and then
add the subhalo scatter afterwards if really necessary (thestatisti-
cal subhalo contribution to surface mass density is small).A more
reliable estimate of the subhalo contribution can be acquired by us-
ing the known subhalo mass and distribution functions, which have
been studied in detail by e.g. Gao et al. (2004).

5.3 Comparing the model to the data

We confirm the reliability of our fit procedures, the choice offit
equations and our analytical description of the data by comparing
theΣSL(ximp)-values to the predictions of the model. This is done
for all four models by measuring the frequency of the following
value:
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Figure 4. An example of the best fit for the averagedσ(ximp, z) fit pa-
rameters. Included in this fit are the galaxy sized haloes without subhaloes.
Each polyline represents data from a single radial bin and isfitted with the
linear function in Equation 8.σ(ximp, z) increases with growing impact
parameter at a given redshift. Thehighestline is the fit for the most distant
radial binx̄imp = 0.95, where0.9 < ximp < 1.0.
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Figure 5. An example of the best fit for the averagedµ(ximp, z) fit param-
eters. The halo sample is the same as in Figure 4. Each polyline represents
data from a single radial bin and is fitted with the linear function in Equation
9. The absolute value ofµ(ximp, z) increases with growing impact param-
eter at a given redshift. Thelowestline is the fit for the most distant radial
bin x̄imp = 0.95, where0.9 < ximp < 1.0.

T (ximp, z) =
ln(S(ximp)) − σ(ximp, z)

µ(ximp, z)
. (16)

The probability density ofT (ximp, z) should follow a stan-
dard normal distribution for all redshifts if the model is reliable.
As shown by the example in Figure 6, this is the case when all the
10,000×130 sightlines for the galaxy sized haloes (without sub-
haloes) are considered at all redshifts.

The fact that the resulting distributions are centered on zero
tells us thatµ(ximp, z) is reconstructed correctly. The standard de-
viations of the distributions are close to unity, which again tells us
that σ(ximp, z) is a fair estimate of the behaviour of the data at
all impact radii and redshifts. The test was equally successful for
galaxy and cluster sized haloes, with and without subhaloesas the
test shown in Figure 6.
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Table 4. The minimum and maximum geometric standard deviations and
mean offsets from NFW inS(ximp, z)-space (see Equations 12 and 13).
The samples are coded as in Table 2. For example, for galaxy sized haloes,
with subhaloes, atz = 1.5 and with impact parameterximp = 1.0,
the 1-σ upper limit in surface mass density in units of the NFW model
value iseµ+σ = 0.56 × 2.41 = 1.35, and the lower limit iseµ−σ =
0.56/2.41 = 0.23. Note that theS(ximp, z) distribution is not symmetric
but log-normal.

Function G-ns G-ws C-ns C-ws

σS(0.0, 0.0) 1.24 1.23 1.32 1.33
σS(0.0, 1.5) 1.34 1.32 1.39 1.38
σS(1.0, 0.0) 1.57 1.69 1.83 1.89
σS(1.0, 1.5) 2.29 2.41 2.42 2.82

µS(0.0, 0.0) 0.97 0.95 0.97 0.93
µS(0.0, 1.5) 0.87 0.86 0.87 0.90
µS(1.0, 0.0) 0.76 0.72 0.73 0.64
µS(1.0, 1.5) 0.77 0.56 0.67 0.60
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Figure 6. Here one of our analytical models (galaxy sized haloes, no sub-
haloes) is compared against the data. Different curves represent different
redshifts, and there is no trend between them. All curves areclose to the
standard normal distribution (which peaks at∼ 0.4), which means that our
model is able to describe the distribution of the measured values quite well.
See Section 5.3 for details.

6 IMPACT ON THE MACHO OPTICAL DEPTH
CALCULATIONS

MACHOs (Massive Astrophysical Compact Halo Objects) repre-
sent one class of dark matter candidates, which may be detected
through gravitational microlensing effects as they pass through
the line of sight to distant light sources. Although the MACHO
acronym was originally invented with baryonic objects likefaint
stars and stellar remnants in mind, several non-baryonic dark
matter candidates like axion aggregates (Membrado 1998), mir-
ror matter objects (Mohapatra & Teplitz 1999), primordial black
holes (Green 2000), quark nuggets (Chandra & Goyal 2000), preon
stars (Hansson & Sandin 2005) and scalar dark matter miniclus-
ters (Zurek, Hogan & Quinn 2006) can also manifest themselves in
this way. While non-baryonic MACHOs could in principle account
for a substantial fraction of the dark matter, microlensingsearches
based on observations of light sources in the local Universesuggest
a MACHO dark matter fraction of∼ 20 % (e.g. Alcock et al. 2000;

Calchi Novati et al. 2005). Low-redshift microlensing observations
are only able to detect the densest, most compact MACHOs at a
given mass. This does not necessarily represent a robust upper limit
on the relative importance of MACHOs, and high-redshift observa-
tions will be required to settle the issue (see Zackrisson & Riehm
2007 for a more detailed review).

While difficult to directly relate to observational quantities, the
microlensing optical depthτ is often used for estimates of the via-
bility and relevance of different microlensing scenarios.Formally,
the microlensing optical depth represents the average number of
lenses along a random line of sight. Under the assumption that the
lenses do not overlap along the sightline, it also represents the frac-
tion of sky that is covered by regions in which a point source will
be microlensed. In the limit of smallτ the optical depth can there-
fore directly be used as an estimate of the microlensing probability.
At higher τ , this interpretation does however break down because
of overlapping microlenses. Here, the optical depth will beused to
discuss the impact of surface mass density variations due toclumpy
and non-spherical CDM haloes on MACHO microlensing calcula-
tions. In the following, we assume the spatial distributionof MA-
CHOs to follow that of the CDM, as would be expected if they are
non-baryonic. We caution that these results do not necessarily apply
to baryonic MACHOs, since such objects may have a spatial dis-
tribution that is substantially different from that of the overall dark
matter (as illustrated by population III stars; e.g. Scannapieco et al.
2006).

In the extreme case of having all CDM in the form of MA-
CHOs, the MACHO optical depth along a sightline passing through
a single halo can be approximated by:

τ =
ΣCDM

Σc
, (17)

whereΣCDM is the CDM surface mass density of this particular
sightline andΣc is the critical surface mass density for lensing.
The latter is given by:

Σc =
c2

4πG

Dos

DlsDol
, (18)

whereDol, Dls andDos are the angular-size distances from ob-
server to lens, lens to source and observer to source, respectively. In
the case when only a fraction of the CDM is the form of MACHOs,
and the rest is in the form of a smooth component, the optical depth
can instead be estimated using (e.g. Wyithe & Turner 2002, where
an analogous case with stellar microlenses in a smooth matter dis-
tribution is considered):

τ =
fMACHOΣCDM

|Σc − (1 − fMACHO)ΣCDM| , (19)

wherefMACHO represents the MACHO fraction.
In situations where the sightline is dominated by a single halo

of (approximately) known mass, and the impact parameter of this
sightline can be estimated (in units ofrvir), the fitting formulas
presented in Sect. 5 may be directly applied to assess the mean
and variance in the expected MACHO optical depth derived from
a spherical model for the foreground halo. This situation occurs
when estimating the contribution from non-baryonic MACHOsin
the dominating halo to the total microlensing optical depthtowards
a gravitational arcs in a galaxy cluster, or an individual image of a
strongly lensed quasar. As described in Section 5, the erroron the
optical depth due to triaxiality can in this situation easily amount
to factor of∼ 2 (assuming Eq. 17 for the optical depth). Note that
this will be compounded by the surface mass density error coming
from the uncertainty in the mass and concentration parameter of the
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spherical model for the foreground halo. In situations where many
light sources are monitored, and these are projected acrossa large
area of the foreground halo (as in the cluster-quasar and cluster-
cluster microlensing monitoring programmes of Totani 2003and
Tadros, Warren & Hewett 2001, respectively), care must be exer-
cised when using the formulae presented in Sect. 5. When aver-
aging over different, but not independent sightlines, the effects of
triaxiality may be substantially diminished, and the optical depth
error derived from these formulae should be considered a conser-
vative upper limit.

In many cases, however, the impact parameter of the dominat-
ing halo is not known, and there may be more than one halo giving
significant contributions to the optical depth of a given sightline.
This happens when light sources, especially at high redshift, are
randomly selected without reference to any foreground object. In
this case, the average microlensing optical depth is often computed
using:

τ̄ =
3H0ΩMACHO

2Dos

Z zs

0

(1 + z)2DlsDoldz
p

ΩM(1 + z)3 + ΩΛ

, (20)

wherezs is the redshift of the light source studied andΩMACHO

is the cosmological density of MACHOs relative to critical at
zero redshift. This estimate, often referred to as the Press& Gunn
(1973) approximation, also assumes a constant comoving num-
ber density of MACHOs, i.e. that the MACHO population does
not evolve as a function of redshift. Since the matter of the Uni-
verse is clustered, one does however expect a certain scatter around
this average, since some sightlines will contain more matter (and
hence MACHOs) than others. Zackrisson & Riehm (2007) find, us-
ing a model that takes into account the clustering of MACHOs into
spherical CDM haloes and subhaloes, that the distibution ofMA-
CHO optical depths around̄τ is reasonably well described by a log-
normal function with standard deviationσln τ (zs). As the number
of intervening haloes increases when more and more distant light
sources are considered, the sightline-to-sightline scatter, and hence
σln τ (zs), decreases with increasingzs. In this model, the optical
depth scatter is dominated by the different number of haloesalong
each sightline, combounded by the different masses, concentration
parameters and impact parameters for each of these objects.

Since non-sphericity introduces additional optical depthscat-
ter on top of that produced by the spherical halos, one may expect
halo triaxiality to give an significant contribution toσln τ (zs), but
when implementing theΣCDM(r) scatter formulae derived here in
the Zackrisson & Riehm (2007) microlensing code, we find the im-
pact of non-sphericitiy to be negligible. The reason for this is that
the amplitude of the scatter stemming from triaxiality is relatively
small compared to that coming from other aspects of CDM clus-
tering. As can be seen in Figure 2, the mean surface mass density
varies by more than a factor of∼ 1000 between the innermost
regions of the halo andrvir, whereas triaxiality generates varia-
tions of less than a factor of∼ 10 at each impact parameter. This
means that, once random halo impact parameters are considered,
the resulting MACHO optical depth distribution will be dominated
by the scatter introduced by the form of the surface mass density
profile, while halo triaxiality will be responsible for onlya very
slight modification of this distribution. Considering the fact that
most sightlines towards high-redshift sources pass insidervir of
more than one halo (see Zackrisson & Riehm 2007, for an estimate
of how many), and that these are likely to have different masses and
concentration parameters, the impact of triaxiality on theoptical
depth distribution quickly becomes negligibly small. Hence, it can
safely be ignored in this situation. This greatly reduces the com-

putational complexity of MACHO microlensing models for high-
redshift sources.

7 DISCUSSION

The results presented here do suffer from a number of shortcomings
which should be pointed out. The simulations used are dissipation-
less. In reality, dark matter haloes contain baryons, and the dissi-
pation and feedback associated with these will inevitably affect the
overall potential of the system, and thereby the spatial distribution
of the CDM. According to current models, baryonic cooling will
increase the central density of the CDM (e.g. Gnedin et al. 2004)
and also make the halo more spherical (Kazantzidis et al. 2004).
The significance of these effects are, however, still difficult to pre-
dict reliably, as the gas dynamical simulations involved still suffer
from so-called “overmerging” problems (e.g. Balogh et al. 2001;
Springel & Hernquist 2002).

When calculating the surface mass density profiles, we have
moreover considered only the matter present withinrvir of each
halo, whereas simulations have shown that galaxy sized CDM
haloes extend at least out to 2–3rvir (Prada et al. 2006). We re-
stricted our analysis torvir because it becomes increasingly de-
manding to separate halo particles from the background the further
one wants to extend the analysis. Even in the presented case,we
need to separate particles out to∼ 1.5rvir because the smoothed
particles extend their influence inside the virial radius region even
though they are positioned outside it. We tested our method out to
3rvir, but the number counts of the halo particles at those distances
are too low to produce reliable results. Our halo sample doesnot
have the resolution needed for extending the analysis further than
rvir safely.

The most significant limitation of this paper is the small num-
ber of haloes in our analysis. This is of course due to the limited
resolution of the cosmological simulations we had access to. We
would like to repeat our analysis with a more complete statistical
sample of haloes, which would hopefully confirm our analytical
description with smaller error bars.

We also note that our analytical description of the surface mass
density is more reliable in the case in which subhaloes areexcluded.
This is because subhaloes can introduce significant mass peaks to
some radial bins. These peaks can lead to unwanted effects inthe
log-normal fitting procedure which is designed to handle relatively
smooth and continuous mass distributions within a bin. Large sub-
halos can also disturb the NFW fits, at last in the low density re-
gions. Thus, the use of the models which include subhaloes isdis-
couraged.

8 SUMMARY

We have compared a sample of CDM N-body haloes to the smooth,
spherically symmetric NFW density profile model in three dimen-
sions. The differences in surface mass density of the haloesand the
model are studied, and an analytical description of the differences is
constructed. This description can be used to estimate or reproduce
the differences between CDM N-body haloes and, in principle, any
analytical halo model. It can be used in applications in which the
line-of-sight surface mass densities of CDM haloes play an impor-
tant role, such as microlensing.

Our halo sample consists of 27independentCDM haloes at
∼ 10 redshift snapshots between0.0 < z < 1.5. The haloes are
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extracted from six cosmological simulations with comovingbox
sizes of 10h−1Mpc, 40h−1Mpc and 64h−1Mpc. The haloes are
treated both with and without their subhaloes, and the halo sample
is divided in two mass classes, separated by a mass gap atM ∼
1013 M⊙h−1. The analytical description is given for all four cases.

We find that the surface mass density of the haloes can deviate
from the spherical model considerably. At minimum, with zero im-
pact parameter and redshift, the 1-σ limits around the NFW surface
mass density are close toσ = ±20% or σ = ±30%, depending
which haloes are under investigation. At maximum, with impact
parameter close torvir and z = 1.5, the values can be as high as
σ+ = +70% andσ− = −80%. The geometric mean of the sur-
face mass density is offset from the NFW predicted value by−3 %
to−44 %, depending on the case.

We also find that the departure from the NFW profile is log-
normally distributed around the model value. In most cases,the
median of the surface mass density of the haloes is slightly lower
than predicted by the NFW profile. The variation of the surface
mass density around the NFW value grows with increasing impact
parameter and redshift.

As an application, we introduce our analytical descriptionto
the optical depth calculations of MACHOs. In this case, we find
that the variance in surface mass density due to halo shapes can be
overwhelmed by the variance caused by random impact parameters
between halos on the same sightline.
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