Detecting population III galaxies with HST and JWST

Erik Zackrisson
Department of Astronomy
Stockholm University

Akio Inoue, Michele Trenti, Daniel Schaerer, Adi Zitrin, C.-E. Rydberg, Lucia Guaita, Tom Broadhurst, Tina Ström, Göran Östlin, Florent Duval, Peter Lundqvist, Pat Scott
Outline

• Pop III galaxies – what, when, where?
• JWST/HST detection limits
• Hunting for pop III galaxies behind lensing clusters
• Spectral signatures of pop III galaxies
How to form a Pop III galaxy

E.g. Stiavelli & Trenti (2010)
How to form a Pop III galaxy

E.g. Stiavelli & Trenti (2010)
How to form a Pop III galaxy

E.g. Stiavelli & Trenti (2010)
How to form a Pop III galaxy

E.g. Stiavelli & Trenti (2010)
How to form a Pop III galaxy

E.g. Stiavelli & Trenti (2010)
The formation history of pop III galaxies

Based on Trenti et al. (2009)

Halo masses
\sim 10^{7-8} \text{ Msolar}

Zackrisson et al. (2012, arXiv:1204.0517)
Yggdrasil code

A spectral synthesis model for the first galaxies

Model grids available at: www.astro.su.se/~ez

- Pop I, II, III stars + dark stars
- Nebular emission (Cloudy)
- Dust
- HST/JWST fluxes @ z=0-15
10σ detections of 3 Myr old pop III galaxies in JWST Ultra Deep Field (100 h per filter) assumed

JWST detection limits

Pop III galaxies with SFE below 1% cannot be detected with JWST in unlensed fields

Lensed pop III galaxies

• Cluster lensing can push these JWST limits to ~0.1%
• The ongoing HST/CLASH survey → Multiband photometry in 17 filters for 25 low-z galaxy clusters (Postman et al. 12)
• With HST/CLASH, you get a pop III galaxy detection threshold similar to a JWST, 100 hour Ultra Deep Field!

Zackrisson et al. (2012, arXiv1204.0517)
Magnification map of J0717.5+3745

Based on Zitrin et al. 09

Zackrisson et al. (2012, arXiv:1204.0517)
Identifying pop III galaxies at z>6

Photometric signatures

• Very blue UV slope (e.g. Raiter et al. 10)
 – Good: In principle sensitive to the pop III IMF
 – Bad: Requires very high LyC escape fraction (>90%)
 → Extremely faint object + very difficult to measure

• Metal-free nebular spectrum (Inoue 11, Zackrisson 11a)
 – Good: Lack of [OIII] @ 5007 Å → strange JWST colours
 – Bad: Not sensitive to the pop III IMF

• Very strong Lyα (e.g. Schaefer 02, Zackrisson 11b)
 – Good: Sensitive to the pop III IMF + detectable with HST
 – Bad: IGM absorption & non-pop III contributions (AGN, cooling)
The colour signatures of strong Lyα

Zackrisson et al. 2011b, MNRAS 418, L104
The colour signatures of strong Lyα

Zackrisson et al. 2011b, MNRAS 418, L104
Lensed pop III galaxy candidates in CLASH?

A few objects in this region...

What are they?

If Lyα → Spectroscopic confirmation possible from the ground

Deep field locus

Interlopers

Y-dropouts (z≈8)

Pop III region

Pop I/II region

Y_{105-J_{125}}
Summary

• The Yggdrasil model → spectral signatures of pop III galaxies (www.astro.su.se/~ez)

• Search strategy: HST + lensing clusters → Detection threshold similar to a JWST Ultra Deep Field

• Search for pop III galaxies at z>6 in CLASH underway