Modelling the spectral evolution of supernova
(with the JEKYLL code).

Mattias Ergon (Stockholm University)

In collaboration with Claes Fransson, Anders Jerkstrand, Markus Kromer, Cecilia Kozma and Kristoffer Spricer

_+V nu erl ]_nizri,j

l1b

Fa

| I L L L
0 5000 10000 15000 20000 25000
A (A)



The JEKYLL code

What: Realistic* simulations of the spectral evolution and lightcurves of SNe
in the photospheric and nebular phase.

How: Full NLTE-solution for the matter and the radiation field,
following (and extending) the MC method outlined by Leon Lucy (2002, 2003, 2005).

* Restrictions:

Homologous expansion.
Spherical symmetry.
Steady-state for the matter (work in progress).
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In LTE all processes are in (near) equilibrium,
and (given the density) the state is specified by a single parameter, the temperature.
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In the outer parts and at late times, SNe ejecta are neither optically thick, nor collisionally dominated,
so a full NLTE solution is required.




Method outline

Matter

Electron temperature
Thermal energy equation

lon level populations
NLTE rate equations

Non-thermal electrons
Spencer-Fano equation

l

Radiation field
(MC) Radiative transfer

Lambda iteration

Time evolution




MC radiative transfer

Following and extending the method by Lucy (2002, 2003, 2005).
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MC radiative transfer

Following and extending the method by Lucy (2002, 2003, 2005).

The MC packets carry energy.
Radiation packets are propagated and interacts with the matter.
When absorbed, packets are converted into excitation, ionization or thermal energy.

When emitted, packets are converted into radiation energy.
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Rule number one: The MC packet energy is conserved.



Non-thermal electrons

Radioactive decays
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log y(E)

Non-thermal electrons

Spencer-Fano (Boltzman) equation

Non-thermal electron distribution
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Problem solved by Kozma & Fransson (1998),
and their original FORTRAN routine has been integrated into JEKYLL.




@acroscopic) Microscopic

Hydrodynamical instabilities — Macroscopic mixing of the nuclear burning zones.
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Hydrodynamical instabilities — Macroscopic mixing of the nuclear burning zones.

Macroscopic vs Microscopic mixing

v

Different composition and (possibly) density

#

Different temperature, degree of ionizaton etc.

To simulate macroscopic mixing, JEKYLL supports virtual cells (Jerkstrand et al. 2011).

Virtual cells represents clumps of macroscopically mixed material,
and are randomly selected while the photons traverse the otherwise spherically symmetric ejecta.



Other similar codes

SEDONA (Kasen et al. 2006) SUMO (Jerkstrand et al. 2011)
Geometry: 3-D Geometry: 1-D

NLTE: No NLTE: Full

Non-thermal ionization/excitation: No Non-thermal ionization/excitation: Yes
Time-dependence: Radiation field Time-dependence: No

Macroscopic mixing: Yes Macroscopic mixing: Yes

Phase : Photospheric Phase: Nebular

JEKYLL (Ergon et al. In prep.)

Geometry: 1-D

NLTE: Full

Non-thermal ionization/excitation: Yes
Time-dependence: Radiation field
Macroscopic mixing: Yes

Phase: All
ARTIS (Kromer et al. 2009) CMEGEN (Hillier 1998)
Geometry: 3-D Geometry: 1-D
NLTE: lonization NLTE: Full
Non-thermal ionization/excitation: No Non-thermal ionization/excitation: Yes
Time-dependence: Radiation field Time-dependence: Full
Macroscopic mixing: Yes Macroscopic mixing: No
Phase : Photospheric Phase: All

+ Mazzali (2000,2001), Kerzendorf et al. (2014) and more.
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Comparisons

JEKYLL and CMFGEN
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Type lIb models: Background

Constructed and evolved through the nebular phase with SUMO in Jerkstrand et al. (2015).

Evolved through the photospheric phase with JEKYLL in Ergon et al. (in prep).

In the following | show results for model 12C,
which showed a reasonable agreement with SN 2011dh in the nebular phase.
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Type IIb models: Spectral evolution

Model 12C: Before 150 days
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Comparison to SN 2011dh: Spectral evolution

Model 12C and SN 2011dh — Before 150 days




Comparison to SN 2011dh: Helium lines
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Effect of NLTE: Spectral evolution

Non-thermal ionization/excitation - On/Off
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Effect of macroscopic mixing: Spectral evolution

Macroscopic mixing - On/Off
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Effect of macroscopic mixing: Spectral evolution

Macroscopic mixing - On/Off
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Type IIL SNe: A model with strong He lines
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Absoclute magnitude

Type Ic SNe: A model with strong Si lines

Spectrum @ max
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