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understand the physical meaning of the results obtained. Escape probability methods
provide the desired physical insight. As we will see below, they are, for instance,
able to assign a clear physical meaning to many of the integral expressions of radia-
tive transfer. Using probabilistic arguments, one is often able to design most suitable
approximations to exact expressions.

Second, there is a practical reason. Numerical simulations are capable of pro-
viding exact solutions in certain cases, but they can be quite expensive in terms of
computer resources. Moreover, they offer high accuracy for solutions of structural
equations, but such a high accuracy may not be needed for astrophysical appli-
cations, because usually the equations being solved are only approximations to
reality. The status of current astrophysical radiative transfer theory is that exact
numerical methods are practical for one-dimensional static media, but are either
extremely demanding or even completely out of the question for multi-dimensional
coupled radiation (magneto)hydrodynamics. Even in one-dimensional simulations,
it is worthwhile to have fast numerical methods that allow us to explore wide
ranges of parameter space easily, which would otherwise be impossible with detailed
numerical methods.

In those situations, it makes sense to use some approximate methods. The most
popular and efficient among those are the escape probability methods. The topic has
along history. A comprehensive review of the topic appears in [919]; in this section
we summarize its basic concepts. We concentrate on static, one-dimensional media;
applications of escape probability ideas to other problems (e.g., moving media) will
be discussed in later chapters of this book.

The essence of the escape probability approach is that it provides a simple approx-
imate relation between the radiation intensity and the source function. Having sucha
relation, one can use it to simplify the problem of coupled radiative transfer equation
and kinetic equilibrium equations. Further, it may also provide directly the emergent
radiation from the medium. In some cases, the physical meaning of the escape prob-

ability methods may be hidden in the formalism, but one should bear in mind that
the heart of all escape probability approaches is an approximate relation between
intensity and the source function. We first summarize here some results obtained i
§ 11.8, define the escape probability and related quantities, and then derive some
general relations.

Concept of the Net Radiative Bracket

The net rate Ri* for the transition j — i is defined by

an](xiet = njAji + nijijij = niBijjjj. (14.8

The frequency-averaged mean intensity is defined as 7;; = [, Jv i (¥) f;_
n; are the atomic level populations; and A and B are the Einstein coefficients
first term represents spontaneous emission; the second, stimulated emisSios
the third, photoexcitation (absorption of a photon).
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It is very useful to express the net rate of th,

; e transition between levels ; ;
the spontaneous rate times a correction factor, elsjand i as
>

m4ji +niBjid jj — niByTy = Az, (14.82)

where the correction factor Z;; is known as the net radiative bracket [1077], the
escape coefficient [39], or the flux divergence coefficient [175] ’
Noting that the line source function for the transition 7 < j is

njAj~

S =
V= By -y (14.83)

we can rewrite the net radiative bracket as

Zji =1~ (Ty/Sy), (14.84)
or express J;; through Z as

Jij = (1~ 2Z;)§y. (14.85)
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medium, with a specified frequency, propagating in
be the monochromatic optical depth along the ray
then the escape probability is

a specified position in the
a specified direction. Let 7y
from the given point to the boundary of the medium;

given by
pv(ty) = e ", (14.86)

which is equivalent to (1 1.158).

Consider a plane-parallel, horizontally
by its direction cosine p. In this case th
frequency- and angle-dependent:

homogeneous slab. Any ray is specified
e elementary escape probability is both

puv(Tuv) =e Wy (14.87)

or, writing Tuv = Tv/K, where 7, is the monochromatic optical depth measured
inward,

Pw(ty) = e/t forpu >0, (14.88)

and
Puv(Ty) = e~k forp <0, (14.89)

because for the opposite direction, the optical distance toward the surface is
(Ty — t)/1, where Ty is the total optical thickness of the slab. Notice that in
the case of semi-infinite atmosphere, T, = oo, the escape probability in any inward

direction is 0, which is obvious from the basic meaning of “escape.”
Averaging over all directions, we obtain the angle-averaged monochromatic

escape probability,

1 0 1
(@) =% f Poudi =3 f 1e‘”““”>/“du+% fo e ™/ tdp. (14900

This equation can be recast into a different form. Taking the second integral (the
first one is similar), we write fol e Thdp = [{° e /x*dx. The last integral is the’
second exponential integral, Ex. Thus we have

po(ty) = 3 (B2(Ty — o) + E2(@)]. (14918

In the case of a semi-infinite slab, the first term vanishes, and we are left with
puo(®) = 5E2(W)- (145
These expressions are consistent with those derived in § 11.8. There we in
the probability, averaged over angles (in one hemisphere), that a photon € ‘:"-_-
at © =0 will be absorbed in the elementary optical depth range (7,7 +df)-:_
probability is given (see equation 11.162) by p(r)dt =Ei(t)dr. Considerng s
the photons emitted at optical depth 7 in all directions toward the surface att
the probability (averaged over angles in the corresponding hemisphere) S

NLTE TWO-LEVEL AND MULTI-_EVEL ATOMS
| 475
a photon is absorbed between ¢ and
. t+dt after a di i
b B (= irect flight bet i
ﬁetwee Ii/ 1(r f)dt% and thus the probability that a photong' b orbed syatone
rand Ois ff Br(r o dit g, i 1s absorbed anywhere
' eCi(;nsequentlly, the probability that the photor; 18 not absorbe
ie., ium, is gi
- thescapefs Tom the n‘ledlum, 1sgivenby 1—[1—E,(7)] =E i
that the original photon is emitted in a direction toward th; 2 o robability

! . . : S
being emitted into the other hemisphere) is %, and the final esc;;fgreof)fb(i)lli)tp O(S'edlio
y (In the

semi-infinite medium) is given by 4 i

, . : Y 5E2(t), which agr '
It is stcl)lmetlmes chnvenlent to use the one-sided isiizi)jlﬂrlog‘llflz’)'
reiints e probability that a photon emitted isotropicallp i ta e
will escape through the corresponding boundary in a sin ly ﬂl_] 0 one
probability as P, (z,). In this case, we have gle flight. We

d between 7 and 0,

which rep-
hemisphere
denote this

Po(m) = 3B (1) (14.93)

Finally, we define a frequency- and angle-avera

ensemble of photons emitted with probability ¢(u)ged escape probability for an

R
/0 pvp(v)dv. (14.94)
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a specified position in the medium, with a specified frequency, propagating in
a specified direction. Let #, be the monochromatic optical depth along the ray
from the given point to the boundary of the medium; then the escape probability is
given by

polty) = e ", (14.86)

which is equivalent to (11.158).

Consider a plane-parallel, horizontally homogeneous slab. Any ray is specified
by its direction cosine p. In this case the elementary escape probability is both
frequency- and angle-dependent:

ppcv(‘fuv) = e v, (14.87)

or, writing 7,y = T,/f, Where 7, is the monochromatic optical depth measured
inward,
puv(Ty) = e ™/*, for u >0, (14.88)

and
Puv(t) = e T for p <0, (14.89)

because for the opposite direction, the optical distance toward the surface is
(T, — ty)/1, where T, is the total optical thickness of the slab. Notice that in
the case of semi-infinite atmosphere, T, = 0o, the escape probability in any inward
direction is 0, which is obvious from the basic meaning of “escape.”

Averaging over all directions, we obtain the angle-averaged monochromatic
escape probability,

1 0 1
() =%/1puﬂ,du: %fle'(T”—"”/“du+ %/0 e W/tdy.  (14.90)

This equation can be recast into a different form. Taking the second integral (the
first one is similar), we write fol e Thdu= | 1°° e~ ™ /x%dx. The last integral is the
second exponential integral, E7. Thus we have

po(t) = % [Eo(Ty — o) + E2(n)]. (1490

In the case of a semi-infinite slab, the first term vanishes, and we are left with

po(n) = 1E2(w). (1492)

These expressions are consistent with those derived in § 11.8. There we introd
the probability, averaged over angles (in one hemisphere), that a photon emit
at T =0 will be absorbed in the elementary optical depth range (7,7 +dt). Th /
probability is given (see equation 11.162) by p(t)dr = E1(t)dr. Considering 10
the photons emitted at optical depth 7 in all directions toward the surface at
the probability (averaged over angles in the corresponding hemisphere) that SH8
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The Irons Theorem

The escape probability and the net radiative bracket may be expected to behave ina
similar way. Indeed, at large depths (7 > 1), we have J, = §,and thusJ — S. Con-
sequently, Z — 0. The line is said to be in the detailed radiative balance. Physically,
photons are not able to escape from the large depths; therefore, the total number
of radiative transitions j — i is exactly balanced by the total number of radiative
transitions i — j. The escape probability Pe(7) also goes to zero for 73> 1. Close
to the surface, both the net radiative bracket and the escape probability attain their

largest values.
Are the escape probability and the net radiative bracket equal at all points in the

medium? As we will see below, they are in fact approximately equal. However, an
interesting exact relation also holds, namely, that they are equal in the average sense,

where the angle brackets denote an emission-weighted (or source-function-
weighted) average over the whole volume, i.e.,

_ [f@S@)de ;
(fi== Fs@dr (14.99)

The relation (14.98) is called the Irons theorem, because Trons [562] was the first
to provide a mathematical proof of what had been a folk theorem for some time.
The proof goes as follows. First, one derives a general expression that applies fora
single frequency and angle, v and p. The emergent intensity along this ray is given

by [see equation (11.101)]
o0 o0 1
1, (0) =f Sv(T;w)e_T“vdTuv ——‘/ Sv(fuv)puv(fuv)dfuv- (14'100)-\‘:
0 0

This expression has a simple physical interpretation. The term Sy (T )dTyy rEPE
sents the number of photons created on the optical depth range (Tyuy, Tuv + drysh
per elementary intervals dv and du; see § 11.4. This number, multiplied by the"
escape probability, p (Tuy), gives the number of emergent photons.

At the same time, the emergent intensity may be obtained by integraling
the radiative transfer equation (dlyv/dtuy) =Sy —Iuw without any integ ating
factor, i.e.,

o0 A
1, (©0) = f Sy — L) dTun. (14.108
0

Equating the right-hand sides of (14.100) and (14.101), we obtain

/ (1 - T;’Ll) Sy(Tpv) Tty = /0 Py (Tyu) Su (Tp) dTpvs 5
0

v

or, in the notation of (14.99),
I
<1 - %> = (puv)-
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When equation (14.103) is av i

pyhen Eduao eraged over frequencies and angles, we obtain the
Physically, the Irons theorem ex

. . presses the energy balance of photons i

hFe, Thedleft-hand side of equation (14.103) represents the excess Iz)f th: ;lirrlng:;

of emitted photons over the number of absorbed photons, integrated over the whole

medium. This number equals the total i
B it hund sice, al number of escaping photons, as expressed

Escape Probability Treatments

The fact that the escape probability and the n iati

et radiative bracket i
fiveraged s.en'se does not mean that they should be equal locally. a:: ::}l::;l Hi)i?::
in the radiating slab. However, one finds that although the detailed equalilt)y of

the frequegcy-averaged mean intensity and the net radiative bracket does not hold
generally, it is nevertheless a satisfactory approximation °
The formal solution for the mean intensity of radiation is

L =[S K
viTy _/O v(OE1(Ty ~ 1) dt+[ Sy(E(t — 1) dt. (14.104)

::1 :l;:;uz;:: in [§ 111 .5, thle ke;nel E1(¢) has a width of the order of one optical depth
un “ontrast, the scale of depth variation of the source functi

= unction S(¢
much larger. If we assume that the source function is constant over the regiriz);n v?ielzee

- kemel E] t'l'lnlribu[ﬁ'\ \'. ifi [[ﬂ O h h
| 3 55 lg_lllflca y to the integl al, the i
: ) ) n the source function can
U mkei'l Out Uf lhe |n{ee('riil. \E‘lling tl

: Sy(t) = Su(zy). (14.105)
Buation (14.104) is then modified to read
@) =[1-3E2@w) - JE2(T, — 1,)]8u(1,)
=[1 = pu(t,)18u (7). (14.106)
£quation (14.106) over frequencies with weighting factor ¢ (v), and

" a.t 2 i Cti is i y

= b lion 18 lndependent Of fI’ i

: L : . enc l.e.,

i ﬂle SOurce Ill!l . : )’ X equ ( the case Of a

l'—-lK‘; o
2%2(7, f)—%Kz(r)]S(r)=[1—Pe(r)]S(z). (14.107)

et radiative radiative bracket is

€ probability, equal, at all points in the medium,

- Z(r) =
(T) = Pe(1), (14.108)

een b . .
Y Comparing €quations (14.85) and ( 14.107).
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Therefore, in this approximation,

~ 0, here we again have the case where Z & Pe. :

A more general case is provided by the so-called dichotomous model. L
of assuming that all emitted photons are re-absorbed on the spot, we dividé
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and inasmuch as Pe

led the first-order escape probability method. Its
clear: If we write the kinetic equilibrium rate in the transition, i ;
lace Z by the escape probability Pe forall rate and thereff)l:éoglaligf;rzs::ffebr ence betwe
er contain an unknown radiation field, so they of those destroyed, is given s etween t}.le
ey still must be solved by iteration because produces the escaping photon y .the fraction o
cal depths, which in turn depend on the leve §,1.e.,

t related to consecutive photon scattering
¢ different from the A-iteration scheme and is typically

mitations of the escape probability method.
al depth in a medium with consty
he variation of the source functio
boundary or boundaries, A
dium the escape probability is essentially zero.{
ward radiative transition is immediately balang
lancing transition does not necessarily occur
photon will travel a distance of the order
depth. Nevertheless, because the properties
free path of the photon, the resulting pict
immediately re-absorbed at the same pa
this approximation was historically cil
times called complete line saturd

(145

CHAPTER 14 NLTE TWO-LEVEL AND MULTI-LEVEL ATOMS

zﬂ th;: downward and upward transition
;n er of photons created and number
the spontaneous emission rate that

njAji + 1Bjid i — niByJ ; = miA;P,. (14.112)
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480 CHAPTER 14

At any depth in the medium, divide frequency space into two parts, the core and
the wing. To this end, choose a parameter y ~ 1 such that in the core region, T, > y.
Then make the approximation that

(14.115)

I, =S8, for ©,>vy.

The remaining part of frequency space, defined by 7, <y, is the wing region. In |
this region, we do not impose any approximation on S,. The core-wing separation
is dependent on the position in the medium. The division frequency between the |

core and the wing region, xg, is given by

() = . (14.116)

For instance, for a Doppler profile we have, in analogy to equation (14.29a),

|'l-_ = |
xg = \/In(z/ym?). (14.117)

The next step is to write down the corresponding expression for the net radiative
rate. First, we express the frequency-averaged mean intensity J as

J= 2/03x¢(x) dx = 2fx3x¢(x) dx + 2/ Lp)de=JTc+Jw, (14.118)
0 0 Xd

i.e., we split the frequency-averaged mean intensity into the core and wing con-
tributions. Assuming a frequency-independent source function, S, = S, and using -

(14.115), the core contribution is given by

(14.118)

_ xd X4
Je 52/ Jpx)dx =28 | ¢x)dx = SN,
0 0

where N, is called the core normalization. We use a wing normalization:

o0 .7
Ny =1—-N,= 2/ ¢ (x) dx. (14,126
X4

Here we begin to see an intimate relation between the core-saturation method c
the Osterbrock picture. Setting the parameter y to 1, the escape probability 1§
Osterbrock picture is given by

P(r) = L1Ng. (14

Now, using the notion of wing normalization, we can express the net

rate as

njAji + nijJij — niBijjij = njAji + (nij,- — niB,'j)[Sij(l — Nw) + Tl (I8
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Sf’ far, the e)fpression is exact. Assuming further that the total source function is
given by the line source function (i.e., we neglect the contribution from a continuum
opacity as well as an overlap of other lines), the source function is given by

njAj;

§=8;= (14.123)

niBij - I’liji '
Substituting (14.123) into (14.122), we are left with

njAji + njBji] — niBiJ = mAjiNy + (nBji — niBij)T . (14.124)
This eq}lation also has a Rrofound significance in NLTE radiative transfer. The
expresswn for the net radiative .rat.e is very similar to the original one, the difference
})ve;?i I:gagl theipilf:;?;?gs fgis;ggtzg:tﬁ mu}tiplied by the wing normalization
mean intensity J, instead of 7. Physi ils = conrospond ot i
! : . . ys.mally, this result corresponds to the following
picture: gphoton created in a given line has a largest probability to be created with
frequ.enc.les near Fhe line core. Such a photon travels a short distance (since the
opagty it “Sf:es” is !arge), until it is absorbed. When it is re-emitted, it is emitted
_ag:mn most likely with a frequency close to the line center. Only in the rare event
.::::; ;hlear F;ZO;?;:::SC ? ns;g;csllir;;lz large frequency separation from the core can it
‘ . pace or escape altogether from the medium. This

already mentioned in § 14.2 and depicted schematically in figure 14.3. In other

0 ds,l r(;ughly speakigg, the core frequencies are inefficient for line trz‘m.sfer, and

| on [1);, eri(%:zl.lcy region that is mainly responsible for a transfer of line radiation

Al ot-her closely related view is that (14.124) introduces the concept of precondi-

g of the rate equations. Typically, the net rate is given by a difference of two

s that nearly cancel. For instance, deep in the medium, most absorptions

; ‘_.nced by emissions, more or less at the same spot (or, if’not very cigse to

: h-nal spot; see the previous section). Such a situation is very u,nfavorable for
dlive numerical method, since a small error in either of the two rates may
oﬁr‘fitrrl(;uisslifolsz €ITorS in .the current value of the net rate. The idea of
e a(:t/; :?:iﬁls?ally the large contributions that balance each
3;3;1gyavélil§te rvevrallz ac;:omplished by the core-saturation method. Then,

B :V of two lz‘i‘rge ter‘ms,: the t(.>t'al emission and absorption

ing normahzationei:en two “effective” transition rates. Taking again deep

i effectives Sve:ry small, Ny, <.< 1‘, because most of the line profile

e Spomai(:(l)tl?sne(ius emission rate, n;A;;Ny, which is thus

ey b by inrjle:; :JtAﬁ, r.e'ﬂects the number of t-ransitions

e may therefore s o o, ransitions. The sa.n.le applies for the

Bt y that the rates are preconditioned.

g svere 1s that the core components, which we know are

e o’f » complete}y e‘hmmated from the problem. But, at

€ rate equation is unchanged. However, one should
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